Digestive selection underlies differential utilization of phytoplankton and sedimentary organics by infaunal bivalves: Experiments with cockles (Cerastoderma edule) using cross-labelled mixed diets.

Mar Environ Res

Departamento GAFFA (Fisiología Animal), Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Apartado 644, 48080, Bilbao, Spain.

Published: September 2016

Differential utilization of phytoplankton and detrital particles present in natural sediments of mud-flats was studied in a series of experiments performed on the infaunal bivalve Cerastoderma edule. In order to assess digestive selection, parameters of food processing (organic ingestion rate: OIR, gross absorption efficiency: GAE and gut passage time: GPT) were recorded for each organic component in different combinations of food particles radio-labelled with (14)C. Experimental design included the use of both labelled diets of a sole organic component and cross-labelled diets; i.e., mixed suspensions presenting alternatively labelled one of the various components tested: phytoplankton cells, sedimentary organic particles and particulate detritus from vascular salt-marsh plants. Preferential absorption of phytoplankton was accounted for by absorption efficiency values that were two-fold those for sedimentary detritus when recorded with mixed diets of both organic components. Two factors contributed to this difference: a) higher digestibility of microalgae, measured as the ratio of GAE to GPT, and b) faster gut passage of detrital particles that results from digestive selection likely involving the preferential incorporation of phytoplankton into the digestive gland. However, when diets based on a sole organic component (either phytoplankton or detritus) were compared, larger GPT were recorded for detrital particles that enabled improving GAE of this rather refractory food. Overall results of these experiments are consistent with most studies in trophic ecology based on stable isotopes enrichment, concerning both the diversity of trophic sources used by marine bivalves and its preferential utilization of phytoplankton over phyto-detritus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2016.07.013DOI Listing

Publication Analysis

Top Keywords

digestive selection
12
utilization phytoplankton
12
detrital particles
12
organic component
12
differential utilization
8
cerastoderma edule
8
mixed diets
8
absorption efficiency
8
gut passage
8
gpt recorded
8

Similar Publications

Aim: To validate the prognostic value of the PAncreatic NeoAdjuvant MAssachusetts (PANAMA)-score and to determine its predictive ability for survival benefit derived from adjuvant treatment in patients after resection of pancreatic ductal adenocarcinoma (PDAC) following neoadjuvant FOLFIRINOX.

Background: The PANAMA-score was developed to guide prognostication in patients after neoadjuvant therapy and resection for PDAC. As this score focuses on the risk for residual disease after resection, it might also be able to select patients who benefit from adjuvant after neoadjuvant therapy.

View Article and Find Full Text PDF

Abraham Patchornik was born in 1926 in Ness Ziona, a town in Palestine founded by his great-grandfather Reuben Lehrer in 1883. He started to study chemistry as an undergraduate at the Hebrew University. However, this was interrupted by the war, and he completed his studies in various locations in West Jerusalem.

View Article and Find Full Text PDF

Decoding the Molecular Basis of the Specificity of an Anti-sTn Antibody.

JACS Au

January 2025

UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

The mucin -glycan sialyl Tn antigen (sTn, Neu5Acα2-6GalNAcα1--Ser/Thr) is an antigen associated with different types of cancers, often linked with a higher risk of metastasis and poor prognosis. Despite efforts to develop anti-sTn antibodies with high specificity for diagnostics and immunotherapy, challenges in eliciting high-affinity antibodies for glycan structures have limited their effectiveness, leading to low titers and short protection durations. Experimental structural insights into anti-sTn antibody specificity are lacking, hindering their optimization for cancer cell recognition.

View Article and Find Full Text PDF

Temperature-Dependent Rotation of Protonated Methyl Groups in Otherwise Deuterated Proteins Modulates DEER Distance Distributions.

Appl Magn Reson

October 2024

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 USA.

Unlabelled: Temperature-dependent DEER effects are observed as a function of methyl rotation by either leucine- or nitroxide-specific protonated methyl groups in an otherwise deuterated background. Both species induce a site-specific enhancement in the apparent relaxation of the paramagnetic nitroxide label. The presence of a single protonated methyl group in close proximity (4-10 Å) to only one of the two nitroxide rotamer ensembles in AviTagged immunoglobulin-binding B domain of protein A results in a selective and substantial decrease in , manifested by differential decay of the peak intensities in the bimodal distance distribution as a function of the total dipolar evolution time, temperature, or both.

View Article and Find Full Text PDF

Background: Transarterial chemoembolization (TACE) is the first-line therapeutic option for patients with intermediate-stage hepatocellular carcinoma (HCC). Tumor neovascularization allows tumor growth and may facilitate the release of circulating tumor cells (CTCs) to the bloodstream after TACE. We investigated the relationship between early release of CTCs and radiological response after TACE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!