Background: The double digest restriction-site associated DNA sequencing technology (ddRAD-seq) is a reduced representation sequencing technology by sampling genome-wide enzyme loci developed on the basis of next-generation sequencing. ddRAD-seq has been widely applied to SNP marker development and genotyping on animals, especially on marine animals as the original ddRAD protocol is mainly built and trained based on animal data. However, wide application of ddRAD-seq technology in plant species has not been achieved so far. Here, we aim to develop an optimized ddRAD library preparation protocol be accessible to most angiosperm plant species without much startup pre-experiment and costs.

Results: We first tested several combinations of enzymes by in silico analysis of 23 plant species covering 17 families of angiosperm and 1 family of bryophyta and found AvaII + MspI enzyme pair produced consistently higher number of fragments in a broad range of plant species. Then we removed two purifying and one quantifying steps of the original protocol, replaced expensive consumables and apparatuses by conventional experimental apparatuses. Besides, we shortened P1 adapter from 37 to 25 bp and designed a new barcode-adapter system containing 20 pairs of barcodes of varying length. This is an optimized ddRAD strategy for angiosperm plants that is economical, time-saving and requires little technical expertise or investment in laboratory equipment. We refer to this simplified protocol as MiddRAD and we demonstrated the utility and flexibility of our approach by resolving phylogenetic relationships of two genera of woody bamboos (Dendrocalamus and Phyllostachys). Overall our results provide empirical evidence for using this method on different model and non-model plants to produce consistent data.

Conclusions: As MiddRAD adopts an enzyme pair that works for a broad range of angiosperm plants, simplifies library constructing procedure and requires less DNA input, it will greatly facilitate designing a ddRAD project. Our optimization of this method may make ddRAD be widely used in fields of plant population genetics, phylogenetics, phylogeography and molecular breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973087PMC
http://dx.doi.org/10.1186/s13007-016-0139-1DOI Listing

Publication Analysis

Top Keywords

plant species
16
angiosperm plants
12
ddrad library
8
library preparation
8
sequencing technology
8
optimized ddrad
8
enzyme pair
8
broad range
8
ddrad
6
angiosperm
5

Similar Publications

Pest categorisation of .

EFSA J

January 2025

Following the commodity risk assessment of plants grafted on from China, in which (Hemiptera: Diaspididae) was identified as a pest of possible concern, the European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of for the territory of the European Union (EU). The origin of the scale insect is uncertain, with either South America or eastern Asia suggested as the native range. The geographic distribution of the species includes many countries of the continents of Africa, North and South America, Asia and Oceania.

View Article and Find Full Text PDF

Context: Historical land use is thought to have influenced plant community diversity, composition and function through the local persistence of taxa that reflect ecological conditions of the past.

Objectives: We tested for the effects of historical land use on contemporary plant species richness, composition, and ecological preferences in the grassland vegetation of Central Europe.

Methods: We analyzed 6975 vegetation plots sampled between 1946 and 2021 in dry, mesic, and wet grasslands in the borderland between Austria, the Czech Republic, and Slovakia.

View Article and Find Full Text PDF

Background: Gastrointestinal nematodes (GINs) are a serious problem in ruminant pastures worldwide. They generate production losses, from the point of view of both the food chain and animal mortality. This study provides preliminary results concerning the use of pasture plants in the Campania region (of southern Italy) to control GINs in sheep.

View Article and Find Full Text PDF

Introduction: In this work, 170 strains covering 13 species from the family were analyzed to determine minimal inhibitory concentration (MIC) distributions to nine antimicrobial agents, and genes potentially conferring resistance. This allows a proposal of tentative Epidemiological Cut-Offs (ECOFFs) that follows the phylogeny for interpretation of resistance in the 13 species.

Methods: The 170 strains originated from different sources, geographical areas, and time periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!