INHALED AEROSOL DOSIMETRY: SOME CURRENT RESEARCH NEEDS.

J Aerosol Sci

Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA 92617-1830, USA.

Published: September 2016

After the presentation of 60 papers at the conference "Advancing Aerosol Dosimetry Research" (October 24-25, 2014 in Irvine, CA, USA), attendees submitted written descriptions of needed research. About 40 research needs were submitted. The suggestions fell into six broad categories: 1) Access to detailed anatomic data; 2) Access to subject-specific aerosol deposition datasets; 3) Improving current inhaled aerosol deposition models; 4) Some current experimental data needs and hot topics; 5) Linking exposure and deposition modeling to health endpoints; and 6) Developing guidelines for appropriate validation of dosimetry and risk assessment models. Summaries of suggestions are provided here as an update on research needs related to inhaled aerosol dosimetry modeling. Taken together, the recommendations support the overarching need for increased collaborations between dose modelers and those that use the models for risk assessments, aerosol medicine applications, design of toxicology experiments, and extrapolation across species. This paper is only a snapshot in time of perceived research needs from the conference attendees; it does not carry the approval of any agency or other group that plans research priorities or that funds research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968946PMC
http://dx.doi.org/10.1016/j.jaerosci.2016.01.012DOI Listing

Publication Analysis

Top Keywords

inhaled aerosol
12
aerosol dosimetry
12
aerosol deposition
8
aerosol
5
dosimetry
4
dosimetry current
4
current presentation
4
presentation papers
4
papers conference
4
conference "advancing
4

Similar Publications

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Inhalation exposure to respirable crystalline silica (RCS) during the fabrication of engineered stone-based kitchen countertops has been on the rise in recent years and has become a significant occupational health problem in the United States and globally. Little is known about the presence of nanocrystalline silica (NCS), i.e.

View Article and Find Full Text PDF

Ventilation and features of the lung environment dynamically alter modeled intrapulmonary aerosol exposure from inhaled electronic cigarettes.

Sci Rep

December 2024

Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.

Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.

View Article and Find Full Text PDF

In this study we evaluated the effects of flow lamination on aerosol flow dynamics and deposition at the exit point in testing models with spatial barriers (narrowing or curving).We compared ModiFlow (MF) to an idealized Standard Spacer (SS) in their efficiency of delivery of aerosolized medication (fluticasone) across different types of spatial barriers. Fluticasone propionate HFA Inhaler from Prasco Labs 220 µg per actuation was used to deliver 1 spray in each test tube.

View Article and Find Full Text PDF

Modeling aerosol dynamics in the airways is challenging, and most modern personalized tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!