Development of a loop-mediated isothermal amplification method for detecting virulent Rhodococcus equi.

J Vet Diagn Invest

Microbiology Division, Equine Research Institute, Japan Racing Association, Tochigi, Japan (Kinoshita, Niwa, Katayama)Hidaka Agriculture Mutual Aid Association, Hokkaido, Japan (Higuchi).

Published: September 2016

Rhodococcus equi is the most important causative bacterium of severe pneumonia in foals. We report herein the development of a specific loop-mediated isothermal amplification (LAMP) assay, which targets a gene encoding vapA for detecting virulent R. equi The detection limit of the LAMP assay was 10(4) colony forming units (CFU)/mL, which was equal to 10 CFU/reaction. The clinical efficacy of the LAMP assay was compared with those of 2 published PCR-based methods: nested PCR and quantitative real-time (q)PCR. Agreements between bacterial culture, which is the gold standard for detection of R. equi, and each of the 3 molecular tests were measured by calculating a kappa coefficient. The kappa coefficients of the LAMP (0.760), nested PCR (0.583), and qPCR (0.888) indicated substantial agreement, moderate agreement, and almost perfect agreement, respectively. Although the clinical efficacy of LAMP was not the best among the 3 methods tested, LAMP could be more easily introduced into less well-equipped clinics because it does not require special equipment (such as a thermocycler) for gene amplification. Veterinary practitioners could diagnose R. equi pneumonia more quickly by using LAMP and could use the results to select an appropriate initial treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1040638716656222DOI Listing

Publication Analysis

Top Keywords

lamp assay
12
loop-mediated isothermal
8
isothermal amplification
8
detecting virulent
8
rhodococcus equi
8
clinical efficacy
8
efficacy lamp
8
nested pcr
8
lamp
7
equi
5

Similar Publications

Novel isothermal nucleic acid amplification method for detecting malaria parasites.

Appl Microbiol Biotechnol

December 2024

Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.

Malaria, a parasitic disease caused by Plasmodium spp. and transmitted by Anopheles mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination.

View Article and Find Full Text PDF

The genus comprises fungal species closely related to , with and being medically important. These species can cause infections in both immunocompetent and immunocompromised individuals. The current detection methods are limited, prompting the need for rapid and specific diagnostic tools.

View Article and Find Full Text PDF

Diagnostics often require specialized equipment and trained personnel in laboratory settings, creating a growing need for point-of-care tests (POCTs). Among the genetic testing methods available, Loop-mediated Isothermal Amplification (LAMP) offers a viable solution for developing genetic POCT due to its compatibility with simplified devices. This study aimed to create a genetic test that integrates all steps from sample processing to analyzing results while minimizing the complexity, handling, equipment, and time required.

View Article and Find Full Text PDF

Nucleic Acid Lateral Flow Assay Implemented with Isothermal Gene Amplification of SARS-CoV-2 RNA.

Biosensors (Basel)

December 2024

Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.

We developed a rapid and sensitive diagnostic platform that integrates isothermal viral gene amplification with a nucleic acid lateral flow assay (NALFA) to detect SARS-CoV-2 RNA. Isothermal gene amplification was performed by combining reverse transcription of viral RNA with recombinase polymerase amplification (RPA). In our diagnostic platform, DNA primers for the RPA reaction were modified by appending DNA tails, enabling the synthesis of tailed amplicon DNAs.

View Article and Find Full Text PDF

Isothermal nucleic acid amplification for monitoring hand-foot-and-mouth disease: current status and future implications.

Mikrochim Acta

December 2024

School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.

With the global prevalence of the hand-foot-and-mouth disease (HFMD) epidemic, the development of reliable point-of-care testing (POCT) is crucial for the timely identification and prevention of outbreaks. Isothermal nucleic acid amplification techniques (INAATs) have attracted much attention because of their high efficiency for rapid diagnosis. In this work, we systematically summarize the current status of INAATs for HFMD and discuss advantages and drawbacks of various INAATs for HFMD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!