Efficient and stereocontrolled preparation of a library of variously sulfated biotinylated tetra- and pentasaccharides possessing the backbone of the partial linkage region plus the first chondroitin sulfate mono- or disaccharide unit (d-GlcA)n-β-d-(1,3)-GalNAc-β-d-(1,4)-GlcA-β-d-(1,3)-Gal-β-d-(1,3)-Gal (n = 0 or 1) is reported herein for the first time. The synthesis of these compounds was achieved using common key intermediates and a disaccharide building block obtained by semisynthesis. Stereoselective glycosylation, selective protection/deprotection steps, efficient reduction of the N-trichloroacetyl group into the corresponding N-acetyl group, efficient sulfation strategy, deprotection and biotinylation afforded target oligomers in good yield with high purity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6ob01392a | DOI Listing |
Chemistry
January 2025
Griffith University - Gold Coast Campus, Institute for Biomedicine and Glycomics, Parklands Drive, 4222, Southport, AUSTRALIA.
3-Fluoroneuraminosyl fluorides are invaluable probes for studying the catalytic mechanism of sialidases (neuraminidases), and as sialidase inhibitors. Significantly, when a C-3 equatorial fluorine is installed on a C-4 functionalised N-acylneuraminic acid (Neu)-based template, the compounds are potent and selective inhibitors of both influenza and parainfluenza sialidases, and of virus replication. Typically, the reported syntheses of 3-fluoroneuraminosyl fluorides involve either an enzymatic or a chemical synthesis that have uncontrolled stereoselectivity in the introduction of fluorine at C-3 of Neu and consequently yield a mixture of C-3 ax and C-3 eq fluoro derivatives.
View Article and Find Full Text PDFNature
January 2025
Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.
View Article and Find Full Text PDFChemistryOpen
December 2024
MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary.
Novel tetrahydroisoquinoline and piperidine derivatives were selectively synthesized from substituted indenes or cyclopentenes. The process starts with an oxidative cleavage of the ring olefin bond, which gives reactive diformyl intermediates. By a ring-closing step using chiral (R) or (S) α-methylbenzylamine under a reductive amination protocol facilitated ring formation with ring expansion of the corresponding nitrogen-containing heterocycles.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
Although methods for synthesizing chiral phosphorus scaffolds are available, the potential of this molecular chirality remains largely unexplored. Herein, we present a remote desymmetrization of prochiral biaryl phosphine oxides through an organocatalytic asymmetric arylation. This metal-free approach enables the efficient synthesis of a wide range of densely functionalized P(V)-stereogenic compounds with good to excellent yields and satisfactory enantioselectivities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!