We tested the hypothesis that ranolazine (Ran) is cardioprotective in a model of ischemia /reperfusion and we elucidated the intracellular mechanism. Anesthetized rabbits were subjected to is chemia and reperfusion and were divided into 5 groups: 1) Control, 2) Preconditioning (PreC), 3) Postconditioning (PostC), 4) RanA and 5) RanB, respectively treated with intravenous ranolazine, either 10min before or during index ischemia. Ranolazine was initially given over 60s and then from the beginning and throughout the whole reperfusion period. The infarcted to the risk ratio was calculated (%I/R). In a second series consisting of respective to the first series groups, the animals were subjected to the same interventions up to the 10th min of reperfusion where tissue samples were taken for immunoblotting of Akt, eNOS, ERK½ and GSK3β (RISK pathway). In a third series, RanA+Wort, RanB+Wort and Wort groups were treated with ranolazine as RanA and RanB groups but with the addition of the PI3 inhibitor Wortmaninn (Wort) and %I/R calculated. Ranolazine reduced the % I/R in RanA and RanB compared to the Control (23.1±1.7%, 17.6±2.0% vs 47.6±1.0%, P<0.05). %I/R reduction achieved in the RanA and RanB groups was comparable to that observed in PreC and PostC (16.3±2.1%, 26.2±2.1%, respectively P<0.05 vs Control). Phosphorylation of Akt, ERK½, eNOS and GSK3β were higher in PreC, PostC and in both ranolazine treated groups. Wortmannin abrogated ranolazine's %I/R reduction (RanA+Wort 31.4±1.7%, RanB+Wort 32.4±2.4%). Ranolazine reduces %I/R and triggers cardioprotection with a similar to conditioning mechanism which upregulates the RISK pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2016.08.001DOI Listing

Publication Analysis

Top Keywords

rana ranb
12
anesthetized rabbits
8
risk pathway
8
ranolazine
6
ranolazine triggers
4
triggers pharmacological
4
pharmacological preconditioning
4
preconditioning postconditioning
4
postconditioning anesthetized
4
rabbits activation
4

Similar Publications

Comparative resistomics analysis of multidrug-resistant Chryseobacteria.

Environ Microbiol Rep

June 2024

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA.

Chryseobacteria consists of important human pathogens that can cause a myriad of nosocomial infections. We isolated four multidrug-resistant Chryseobacterium bacteria from activated sludge collected at domestic wastewater treatment facilities in the New York Metropolitan area. Their genomes were sequenced with Nanopore technology and used for a comprehensive resistomics comparison with 211 Chryseobacterium genomes available in the public databases.

View Article and Find Full Text PDF

Whole genome sequencing of the multidrug-resistant isolated from a patient in Brazil.

Front Med (Lausanne)

July 2022

Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.

Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital.

View Article and Find Full Text PDF

We tested the hypothesis that ranolazine (Ran) is cardioprotective in a model of ischemia /reperfusion and we elucidated the intracellular mechanism. Anesthetized rabbits were subjected to is chemia and reperfusion and were divided into 5 groups: 1) Control, 2) Preconditioning (PreC), 3) Postconditioning (PostC), 4) RanA and 5) RanB, respectively treated with intravenous ranolazine, either 10min before or during index ischemia. Ranolazine was initially given over 60s and then from the beginning and throughout the whole reperfusion period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!