The enzyme acetylcholinesterase is a key target in the treatment of Alzheimer's disease because of its ability to hydrolyze acetylcholine via the catalytic binding site and to accelerate the aggregation of amyloid-β peptide via the peripheral anionic site (PAS). Using docking-based predictions, in the present study we design 20 novel galantamine derivatives with alkylamide spacers of different length ending with aromatic fragments. The galantamine moiety blocks the catalytic site, while the terminal aromatic fragments bind in PAS. The best predicted compounds are synthesized and tested for acetylcholinesterase inhibitory activity. The experimental results confirm the predictions and show that the heptylamide spacer is of optimal length to bridge the galantamine moiety bound in the catalytic site and the aromatic fragments interacting with PAS. Among the tested terminal aromatic fragments, the phenethyl substituent is the most suitable for binding in PAS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.201600041DOI Listing

Publication Analysis

Top Keywords

aromatic fragments
16
galantamine derivatives
8
galantamine moiety
8
catalytic site
8
terminal aromatic
8
docking-based design
4
galantamine
4
design galantamine
4
derivatives dual-site
4
dual-site binding
4

Similar Publications

Basil, Ocimum basilicum L., is a widely cultivated aromatic herb, prized for its culinary and medicinal uses, predominantly owing to its unique aroma, primarily determined by eugenol for Genovese cultivars or methyl chavicol for Thai cultivars. To date, a comprehensive basil reference genome has been lacking, with only a fragmented draft available.

View Article and Find Full Text PDF

Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals ( L. subsp. (C.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules --as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine-were evaluated for their in vitro anticancer activity. Moreover, in vivo, in vitro, and ex vivo toxicity profiles of all the compounds were established in zebrafish, non-tumour cell, and erythrocyte models, respectively.

View Article and Find Full Text PDF

Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!