Immunotherapy with T cell modified with gamma-retroviral or lentiviral (LV) vectors to express a chimeric antigen receptor (CAR) has shown remarkable efficacy in clinical trials. However, the potential for insertional mutagenesis and genotoxicity of viral vectors is a safety concern, and their cost and regulatory demands a roadblock for rapid and broad clinical translation. Here, we demonstrate that CAR T cells can be engineered through non-viral Sleeping Beauty (SB) transposition of CAR genes from minimalistic DNA vectors called minicircles (MCs). We analyzed genomic distribution of SB and LV integrations and show that a significantly higher proportion of MC-derived CAR transposons compared with LV integrants had occurred outside of highly expressed and cancer-related genes into genomic safe harbor loci that are not expected to cause mutagenesis or genotoxicity. CD19-CAR T cells engineered with our enhanced SB approach conferred potent reactivity in vitro and eradicated lymphoma in a xenograft model in vivo. Intriguingly, electroporation of SB MCs is substantially more effective and less toxic compared with conventional plasmids, and enables cost-effective rapid preparation of therapeutic CAR T-cell doses. This approach sets a new standard in advanced cellular and gene therapy and will accelerate and increase the availability of CAR T-cell therapy to treat hematologic malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/leu.2016.180DOI Listing

Publication Analysis

Top Keywords

car t-cell
12
non-viral sleeping
8
sleeping beauty
8
beauty transposition
8
mutagenesis genotoxicity
8
cells engineered
8
car
6
enhanced car
4
t-cell engineering
4
engineering non-viral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!