Purpose: Oral squamous cell carcinoma (OSCC) is a frequently occurring aggressive malignancy with a heterogeneous clinical behavior. Based on the paucity of specific early diagnostic and prognostic biomarkers, which hampers the appropriate treatment and, ultimately the development of novel targeted therapies, we aimed at identifying such biomarkers through a genetic and epigenetic analysis of these tumors.

Methods: 93 primary OSCCs were subjected to DNA copy number alteration (CNA) and methylation status analyses using methylation-specific multiplex ligation-dependent probe amplification (MS-MPLA). The genetic and epigenetic OSCC profiles obtained were associated with the patients' clinic-pathological features.

Results: We found that WT1 gene promoter methylation is a predictor of a better prognosis and that MSH6 and GATA5 gene promoter methylation serve as predictors of a worse prognosis. GATA5 gene promoter methylation was found to be significantly associated with a shorter survival rate. In addition, we found that PAX5 gene promoter methylation was significantly associated with tongue tumors. To the best of our knowledge, this is the first study that highlights this specific set of genes as epigenetic diagnostic and prognostic biomarkers in OSCC.

Conclusions: Our data highlight the importance of epigenetically assessing OSCCs to identify key genes that may serve as diagnostic and prognostic biomarkers and, potentially, as candidate therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13402-016-0293-5DOI Listing

Publication Analysis

Top Keywords

gene promoter
16
promoter methylation
16
diagnostic prognostic
12
prognostic biomarkers
12
msh6 gata5
8
oral squamous
8
squamous cell
8
cell carcinoma
8
genetic epigenetic
8
gata5 gene
8

Similar Publications

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.

View Article and Find Full Text PDF

Gene enhancers often form long-range contacts with promoters, but it remains unclear if the activity of enhancers and their chromosomal contacts are mediated by the same DNA sequences and recruited factors. Here, we study the effects of expression quantitative trait loci (eQTLs) on enhancer activity and promoter contacts in primary monocytes isolated from 34 male individuals. Using eQTL-Capture Hi-C and a Bayesian approach considering both intra- and inter-individual variation, we initially detect 19 eQTLs associated with enhancer-eGene promoter contacts, most of which also associate with enhancer accessibility and activity.

View Article and Find Full Text PDF

Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus.

View Article and Find Full Text PDF

Restoration of G to A mutated transcripts using the MS2-ADAR1 system.

Methods Enzymol

January 2025

Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan. Electronic address:

Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!