Flowering plants convert many hundreds of organelle cytidines (Cs) to uridines (Us) during post-transcriptional RNA editing. Pentatricopeptide repeat (PPR) proteins dictate specificity by recognizing RNA sequences near C targets. However, the complete mechanism of the editing machinery is not yet understood. Recently, non-PPR editing factors [RNA editing factor interacting proteins (RIPs)/multiple organellar RNA editing factors (MORFs), organelle RNA recognition motif (ORRM) proteins, organelle zinc-finger (OZ) proteins, and protoporphyrinogen oxidase 1 (PPO1)] have been identified as components of the plant RNA editosome, which is a small RNA-protein complex. Surprisingly, plant editosomes are highly diverse not only with regard to the PPR proteins they contain but also in the non-PPR components that are present. Here we review the most recent progress in the field and discuss the implications of the diversity of plant editosomes for the evolution of RNA editing and for possible future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tplants.2016.07.005 | DOI Listing |
Mol Neurodegener
January 2025
Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.
Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.
BMC Plant Biol
January 2025
Chengdu Botanical Garden, Chengdu Park Urban Plant Science Research Institute, Chengdu, 610083, Sichuan, China.
Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.
View Article and Find Full Text PDFbioRxiv
December 2024
Spotlight Therapeutics, Hayward, CA, USA.
Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.
View Article and Find Full Text PDFGenome organization recapitulates function, yet ciliates like possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, 's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments.
View Article and Find Full Text PDFVariant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!