The study of oral fluid homeostasis is a valuable noninvasive technique for diagnosing the general state of the organism, as well as the initial stages of the pathological processes in the tissues oral cavity. The results of studies of changes in the physiological properties of the oral fluid (pH, salivary flow rate, viscosity) in obesity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

physiological properties
8
properties oral
8
oral fluid
8
[changing physiological
4
oral
4
oral liquid
4
liquid obesity]
4
obesity] study
4
study oral
4
fluid homeostasis
4

Similar Publications

Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.

Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.

View Article and Find Full Text PDF

Significance: Machine learning models for the direct extraction of tissue parameters from hyperspectral images have been extensively researched recently, as they represent a faster alternative to the well-known iterative methods such as inverse Monte Carlo and inverse adding-doubling (IAD).

Aim: We aim to develop a Bayesian neural network model for robust prediction of physiological parameters from hyperspectral images.

Approach: We propose a two-component system for extracting physiological parameters from hyperspectral images.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Ion permeability profiles of renal paracellular channel-forming claudins.

Acta Physiol (Oxf)

February 2025

Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.

View Article and Find Full Text PDF

Single-atom nanozymes with intelligent response to pathological microenvironments for bacterially infected wound healing.

Biomater Sci

January 2025

Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

Wound healing is a complex and dynamic process often accompanied by bacterial infection, inflammation, and excessive oxidative stress. Single-atom nanozymes with multi-enzymatic activities show significant potential for promoting the healing of infected wounds by modulating their antibacterial and anti-inflammatory properties in response to the wound's physiological environment. In this study, we synthesized MN single-atom nanozymes with multi-enzymatic activities that intelligently respond to pH value changes in the wound healing process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!