Although β-blockers can be used to eliminate stress-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), this treatment is unsuccessful in ∼25% of cases. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from these patients have potential for use in investigating the phenomenon, but it remains unknown whether they can recapitulate patient-specific drug responses to β-blockers. This study assessed whether the inadequacy of β-blocker therapy in an individual can be observed in vitro using patient-derived CPVT iPSC-CMs. An individual with CPVT harboring a novel mutation in the type 2 cardiac ryanodine receptor (RyR2) was identified whose persistent ventricular arrhythmias during β-blockade with nadolol were abolished during flecainide treatment. iPSC-CMs generated from this patient and two control individuals expressed comparable levels of excitation-contraction genes, but assessment of the sarcoplasmic reticulum Ca(2+) leak and load relationship revealed intracellular Ca(2+) homeostasis was altered in the CPVT iPSC-CMs. β-adrenergic stimulation potentiated spontaneous Ca(2+) waves and unduly frequent, large and prolonged Ca(2+) sparks in CPVT compared with control iPSC-CMs, validating the disease phenotype. Pursuant to the patient's in vivo responses, nadolol treatment during β-adrenergic stimulation achieved negligible reduction of Ca(2+) wave frequency and failed to rescue Ca(2+) spark defects in CPVT iPSC-CMs. In contrast, flecainide reduced both frequency and amplitude of Ca(2+) waves and restored the frequency, width and duration of Ca(2+) sparks to baseline levels. By recapitulating the improved response of an individual with CPVT to flecainide compared with β-blocker therapy in vitro, these data provide new evidence that iPSC-CMs can capture basic components of patient-specific drug responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047684 | PMC |
http://dx.doi.org/10.1242/dmm.026823 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!