Angiogenesis is considered responsible for the growth of primary tumours and of their metastases. With the present study, the effects of three ruthenium compounds, potassiumchlorido (ethylendiamminotetraacetate)rutenate(III) (RuEDTA), sodium (bis-indazole)tetrachloro-ruthenate(III), Na[trans-RuCl₄Ind₂] (KP1339) and trans-imidazoledimethylsulphoxidetetrachloro-ruthenate (NAMI-A), are studied in vitro in models mimicking the angiogenic process. The ruthenium compounds reduced the production and the release of nitrosyls from either healthy macrophages and immortalized EA.hy926 endothelial cells. The effects of NAMI-A are qualitatively similar and sometimes quantitatively superior to those of RuEDTA and KP1339. NAMI-A reduces the production and release of nitric oxide (NO) by the EA.hy926 endothelial cells and correspondingly inhibits their invasive ability; it also strongly inhibits the angiogenesis in matrigel sponges implanted subcutaneously in healthy mice. Taken together, these data support the anti-angiogenic activity of the tested ruthenium compounds and they contribute to explain the selective activity of NAMI-A against solid tumour metastases, the tumour compartment on which angiogenesis is strongly involved. This anti-angiogenic effect may also contribute to the inhibition of the release of metastatic cells from the primary tumour. Investigations on the anti-angiogenic effects of NAMI-A at this level will increase knowledge of its pharmacological properties and it will give a further impulse to the development of this class of innovative metal-based drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000652 | PMC |
http://dx.doi.org/10.3390/ijms17081254 | DOI Listing |
Chemistry
January 2025
University of Missouri, Chemistry, 601 S. College Ave, 65211, Columbia, UNITED STATES OF AMERICA.
CO2-based hydroesterification is an attractive route to produce value added ester compounds, which could replace CO-based hydroesterification processes if sufficient catalytic technologies are developed. One path to CO2-based hydroesterification is through an organoformate intermediate, which is then used in olefin hydroesterification to generate the desirable esters. This route creates a net CO2-based hydroesterification process using tandem catalytic systems for CO2 hydrogenation to organoformate paired with formate-olefin hydroesterification.
View Article and Find Full Text PDFChem Sci
December 2024
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
The prevalence of naphthalene compounds in biologically active natural products, organic ligands and approved drugs has motivated investigators to develop efficient strategies for their selective synthesis. C-H functionalization of naphthalene has been frequently deployed, but mainly involves two-component reactions, while multiple-component C-H functionalization for the synthesis of naphthalene compounds has thus far proven elusive. Herein, we disclose a versatile three-component protocol for the modular synthesis of multifunctional naphthalenes from readily available simple naphthalenes, olefins and alkyl bromides P(iii)-assisted ruthenium-catalyzed remote C-H functionalization.
View Article and Find Full Text PDFJ Cheminform
January 2025
PROMOCS Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende (CS), Italy.
Effective light-based cancer treatments, such as photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), rely on compounds that are activated by light efficiently, and absorb within the therapeutic window (600-850 nm). Traditional prediction methods for these light absorption properties, including Time-Dependent Density Functional Theory (TDDFT), are often computationally intensive and time-consuming. In this study, we explore a machine learning (ML) approach to predict the light absorption in the region of the therapeutic window of platinum, iridium, ruthenium, and rhodium complexes, aiming at streamlining the screening of potential photoactivatable prodrugs.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Departament of Chemistry, Universidade Federal de São Carlos (UFSCar), 13561-905 São Carlos, SP, Brazil. Electronic address:
Ovarian cancer represents a leading cause of cancer-related deaths in women worldwide. Chemotherapeutic agents are usually employed to treat the patients, and Ruthenium(II)-based compounds have been investigated as possible substitutes for platinum drugs. In this work, we studied three different Ru(II)-phosphine-mercapto complexes (1-3) as potential cytotoxic agents against A2780 and A2780-cisR ovarian cancer cells.
View Article and Find Full Text PDFDalton Trans
January 2025
DICATECh, Politecnico di Bari, Bari, I-70125, Italy.
This systematic study delves into the synthesis and characterization of robust bi-functional aminopropyl-tagged periodic mesoporous organosilica with a high loading of small imidazolium bridges in its framework (PrNH@R-PMO-IL, ∼2 mmol g of IL). The materials proved to be a reliable and enduring support for the immobilization of Ru species, demonstrating strong performance and excellent selectivity in the -bromination of various derivatives of 2-phenylpyridine compounds and other heterocycles, showcasing its effectiveness and robust nature. The synthesized materials were thoroughly characterized to determine their structural properties, such as pore size distribution, loading of organic groups, and surface area, using various analytical techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!