Mutations in genes that code for components of the Norrin-FZD4 ligand-receptor complex cause the inherited childhood blinding disorder familial exudative vitreoretinopathy (FEVR). Statistical evidence from studies of patients at risk for the acquired disease retinopathy of prematurity (ROP) suggest that rare polymorphisms in these same genes increase the risk of developing severe ROP, implying that decreased Norrin-FZD4 activity predisposes patients to more severe ROP. To test this hypothesis, we measured the development and recovery of retinopathy in wild type and Fzd4 heterozygous mice in the absence or presence of ocular ischemic retinopathy (OIR) treatment. Avascular and total retinal vascular areas and patterning were determined, and vessel number and caliber were quantified. In room air, there was a small delay in retinal vascularization in Fzd4 heterozygous mice that resolved as mice reached maturity suggestive of a slight defect in retinal vascular development. Subsequent to OIR treatment there was no difference between wild type and Fzd4 heterozygous mice in the vaso-obliterated area following exposure to high oxygen. Importantly, after return of Fzd4 heterozygous mice to room air subsequent to OIR treatment, there was a substantial delay in retinal revascularization of the avascular area surrounding the optic nerve, as well as delayed vascularization toward the periphery of the retina. Our study demonstrates that a small decrease in Norrin-Fzd4 dependent retinal vascular development lengthens the period during which complications from OIR could occur.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973993PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158320PLOS

Publication Analysis

Top Keywords

fzd4 heterozygous
16
heterozygous mice
16
oir treatment
12
retinal vascular
12
retinal revascularization
8
severe rop
8
wild type
8
type fzd4
8
room air
8
delay retinal
8

Similar Publications

Background: Empagliflozin (EMPA) is an SGLT-2 inhibitor that can control hyperglycemia. Clinical trials have indicated its cardio-protective effects against cardiac remodeling in diabetes or non-diabetes patients. However, the underlying molecular mechanisms of EMPA's cardio-protective effects remain elusive.

View Article and Find Full Text PDF

Purpose: To report clinical and genetic characteristics of familial exudative vitreoretinopathy (FEVR) in the Finnish population.

Methods: Detailed clinical and genetic data of 35 individuals with heterozygous pathogenic variants in FZD4 were gathered and analysed.

Results: Thirty-two individuals with FZD4 c.

View Article and Find Full Text PDF

Familial exudative vitreoretinopathy (FEVR) is linked to disruption of the Norrin/Frizzled-4 signaling pathway, which plays an important role in retinal angiogenesis. Severe or complete knock-down of proteins in the pathway also causes syndromic forms of the condition. Both heterozygous and biallelic pathogenic variants in the FZD4 gene, encoding the pathway's key protein frizzled-4, are known to cause FEVR.

View Article and Find Full Text PDF

Defective EMC1 drives abnormal retinal angiogenesis via Wnt/β-catenin signaling and may be associated with the pathogenesis of familial exudative vitreoretinopathy.

Genes Dis

November 2023

The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.

Endoplasmic reticulum (ER) membrane protein complex (EMC) is required for the co-translational insertion of newly synthesized multi-transmembrane proteins. Compromised EMC function in different cell types has been implicated in multiple diseases. Using inducible genetic mouse models, we revealed defects in retinal vascularization upon endothelial cell (EC) specific deletion of , the largest subunit of EMC.

View Article and Find Full Text PDF

Importance: Familial exudative vitreoretinopathy (FEVR) is a nonsyndromic autosomal dominant retinal disorder commonly caused by variants in the FZD4 gene. This study investigates the potential role beyond ocular abnormalities for FZD4 gene variants in patients with FEVR.

Objective: To evaluate the role of FZD4 in symptoms beyond those associated with FEVR through a patient with biallelic variants in FZD4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!