Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An efficient atom-economic one-pot synthesis of highly functionalized piperidines was achieved by catalytic multicomponent reaction. A wide range of heterogeneous and homogenous catalysts were explored; however, promising results were achieved when a β-keto-ester was reacted with selected aromatic aldehydes and anilines by using N-acetyl glycine (NAG) as catalyst. The implication of this methodology is straightforward since the products were precipitated out from the reaction solution, eliminating the need of column chromatography purifications. The synthesized piperidines were screened against α-glucosidase inhibition, which revealed that these compounds were very active inhibitors, and some of the compounds showed even better inhibition than the reference compound, at low micromolar concentrations. In silico molecular modeling was also performed to investigate the binding modes of the compounds into the active sites of the target protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ardp.201600045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!