Controlling charge quantization with quantum fluctuations.

Nature

Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité, 91120 Palaiseau, France.

Published: August 2016

In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature19072DOI Listing

Publication Analysis

Top Keywords

charge quantization
24
quantum fluctuations
12
quantum
8
charge
8
connection strength
8
connection strengths
8
quantization
6
controlling charge
4
quantization quantum
4
fluctuations
4

Similar Publications

Direct observation of chiral edge current at zero magnetic field in a magnetic topological insulator.

Nat Commun

January 2025

State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.

The chiral edge current is the boundary manifestation of the Chern number of a quantum anomalous Hall (QAH) insulator. The van der Waals antiferromagnet MnBiTe is theorized to be a QAH in odd-layers but has shown Hall resistivity below the quantization value at zero magnetic field. Here, we perform scanning superconducting quantum interference device (sSQUID) microscopy on these seemingly failed QAH insulators to image their current distribution.

View Article and Find Full Text PDF

Correspondence between Euler charges and nodal-line topology in Euler semimetals.

Sci Adv

January 2025

New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong 999077, China.

Real multi-bandgap systems have non-abelian topological charges, with Euler semimetals being a prominent example characterized by real triple degeneracies (RTDs) in momentum space. These RTDs serve as "Weyl points" for real topological phases. Despite theoretical interest, experimental observations of RTDs have been lacking, and studies mainly focus on individual RTDs.

View Article and Find Full Text PDF

Permanent Electride Magnets Induced by Quasi-Atomic Non-Nucleus-Bound Electrons.

Adv Mater

January 2025

Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Article Synopsis
  • Interstitial quasi-atomic electrons (IQEs) significantly influence the magnetism of crystalline electrides, with their own magnetic moments affected by nearby cations.
  • Weak spin-orbit coupling and limited interactions prevent these systems from achieving hard magnetism, presenting a challenge for stronger magnetic properties.
  • However, certain 2D electrides, like [ReC]·2e, exhibit permanent magnetism by creating a ferrimagnetic state and demonstrate high coercivity due to the interaction between Re-spin and IQE-spin lattices.
View Article and Find Full Text PDF

Recent Progress in Atomically Precise Cu-M Alloy Nanoclusters.

Chemistry

December 2024

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Metal nanoclusters (NCs) with dimensions of approximately 3 nm serve as a crucial link between metal-organic complexes and metal nanoparticles, garnering significant interest due to their distinctive molecule-like characteristics. These include well-defined molecular structures, clear HOMO-LUMO transitions, quantized charge, and robust luminescence emission. Atomically precise alloy NCs, in contrast to homometallic NCs, exhibit a wealth of structures and intriguing properties, with their novel attributes often intricately tied to the positions of alloyed elements within the structure, facilitating the exploration of structure-property relationships.

View Article and Find Full Text PDF

Components needed in Artificial Intelligence with a higher information capacity are critically needed and have garnered significant attention at the forefront of information technology. This study utilizes solution-processed zinc-tin oxide (ZTO) thin-film phototransistors and modulates the values of , which allows for the regulation of electron trapping/detrapping at the ZTO/SiO interface. By coupling the excited photonic carrier and electronic trapping, logic gates such as "AND," "OR," "NAND," and "NOR" can be achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!