Elevated extension of longevity by cyclically heat stressing a set of recombinant inbred lines of Drosophila melanogaster throughout their adult life.

Biogerontology

Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IEGEBA (CONICET-UBA), C-1428-EHA, Buenos Aires, Argentina.

Published: November 2016

An extremely high (about 100 %) increase in longevity is reported for a subset of recombinant inbred lines (RILs) of Drosophila melanogaster subjected to a cyclic heat stress throughout the adult life. Previous work showed that both longevity and heat sensitivity highly differed among RILs. The novel heat stress treatment used in this study consisted of 5 min at 38 °C applicated approximately every 125 min throughout the adult life starting at the age of 2 days. In spite of the exceptionally high increase in longevity in a set of RILs, the same heat stress treatment reduced rather than increased longevity in other RILs, suggesting that heat-induced hormesis is dependent on the genotype and/or the genetic background. Further, one quantitative trait locus (QTL) was identified for heat-induced hormesis on chromosome 2 (bands 28A1-34D2) in one RIL panel (RIL-D48) but it was not significant in its reciprocal panel (RIL-SH2). The level of heat-induced hormesis showed a sexual dimorphism, with a higher number of lines exhibiting higher hormesis effects in males than in females. The new heat stress treatment in this study suggests that longevity can be further extended than previously suggested by applying a cyclic and mild stress throughout the life, depending on the genotype.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10522-016-9658-4DOI Listing

Publication Analysis

Top Keywords

heat stress
16
adult life
12
stress treatment
12
heat-induced hormesis
12
recombinant inbred
8
inbred lines
8
drosophila melanogaster
8
increase longevity
8
treatment study
8
longevity
6

Similar Publications

Heat exposure in outdoor work environments poses risks to worker health and productivity. Engineering solutions like cool surfaces that increase surface albedo and reduce temperatures may help mitigate these impacts. We conducted detailed micrometeorological modeling to analyze surface characteristics and heat exposure for outdoor workers at San Francisco International Airport (SFO) under current conditions and three hypothetical albedo-increase scenarios.

View Article and Find Full Text PDF

Embryogenesis is remarkably robust to temperature variability, yet there is limited understanding of the homeostatic mechanisms that offset thermal effects during early development. Here, we measured the thermal acclimation response of upper thermal limits and profiled chromatin state and the transcriptome of embryos (Bownes Stage 11) using single-nuclei multiome ATAC and RNA sequencing. We report that thermal acclimation, while preserving a common set of primordial cell types, rapidly shifted the upper thermal limit.

View Article and Find Full Text PDF

is an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends.

View Article and Find Full Text PDF

Background And Aim: Buffalo is the principal dairy animal and plays a major role in the economic growth of the dairy industry, contributing nearly 50% of the country's milk production. The Buffalo core body temperature is typically 38.5°C, but it can rise to 41.

View Article and Find Full Text PDF

Objectives: In everyday language, climate change is an increase in the Earth's average temperature. Climate change negatively affects life support systems, including air, food, water, shelter, and security, on which humans depend. This paper aims to holistically integrate maternal and child health into climate change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!