Inhibition of P-TEFb disrupts global transcription, oocyte maturation, and embryo development in the mouse.

Genesis

Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea.

Published: September 2016

Positive transcription elongation factor b (P-TEFb) is an RNA polymerase II kinase that phosphorylates Ser2 of the carboxyl-terminal domain and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in early developmental events. In this study, using immunocytochemical analyses, we find that the P-TEFb components, Cyclin T1, CDK9, and its T-loop phosphorylated form, are localized to nuclear speckles, as well as in nucleoli in mouse germinal vesicle oocytes. Moreover, using fluorescence in situ hybridization, we show that in absence of CDK9 activity, nucleolar integration, as well as production of 28S rRNA is impaired in oocytes and embryos. We also present evidence indicating that P-TEFb kinase activity is essential for completion of mouse oocyte maturation and embryo development. Treatment with CDK9 inhibitor, flavopiridol resulted in metaphase I arrest in maturing oocytes. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when zygotes or 2-cell embryos were treated with flavopiridol only in their G2 phase of the cell cycle, development to the blastocyst stage was impaired. Inhibition of the CDK9 activity after embryonic genome activation resulted in failure to form normal blastocysts and aberrant phosphorylation of RNA polymerase II CTD. In all stages analyzed, treatment with flavopiridol abrogated global transcriptional activity. Collectively, our data suggest that P-TEFb kinase activity is crucial for oocyte maturation, embryo development, and regulation of global RNA transcription in mouse early development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvg.22961DOI Listing

Publication Analysis

Top Keywords

oocyte maturation
12
maturation embryo
12
embryo development
12
kinase activity
12
rna polymerase
8
cdk9 activity
8
p-tefb kinase
8
inhibition cdk9
8
activity
6
development
5

Similar Publications

Loss of LRRK2 activity induces cytoskeleton defects and oxidative stress during porcine oocyte maturation.

Cell Commun Signal

January 2025

Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.

Leucine-rich repeat kinase 2 (LRRK2) is a ROCO family member which its mutation is closely related with Parkinson's disease, and LRRK2 is widely involved into the regulation of autophagy, vesicle transport and neuronal proliferation. However, the roles of LRRK2 during mammalian oocyte maturation are still largely unclear. In present study, we disturbed the activity of LRRK2 and showed its essential roles in porcine oocytes.

View Article and Find Full Text PDF

Role of the Notch signaling pathway in porcine oocyte maturation.

Cell Commun Signal

January 2025

Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.

Background: Although the Notch signaling pathway is known to play an important role in ovarian follicle development in mammals, whether it is involved in oocyte maturation remains unclear. Therefore, this study was performed to elucidate the existence and role of the Notch signaling pathway during oocyte maturation in a porcine model.

Methods: Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemical assays were used to determine the existence of Notch signaling pathway-related transcripts and proteins in porcine cumulus-oocyte complexes (COCs).

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD(H)) and its metabolites function as crucial regulators of physiological processes, allowing cells to adapt to environmental changes such as nutritional deficiencies, genotoxic factors, disruptions in circadian rhythms, infections, inflammation, and exogenous substances. Here, we investigated whether elevated NAD(H) levels in oocytes enhance their quality and improve developmental competence following in vitro fertilization (IVF). Bovine cumulus-oocyte complexes (COCs) were matured in a culture medium supplemented with 0-100 μM nicotinamide mononucleotide (NMN), a precursor of NAD(H).

View Article and Find Full Text PDF

Tissue-specific vitellogenesis and 17β-estradiol facilitate ovarian maturation of the swimming crab Portunus trituberculatus.

Comp Biochem Physiol A Mol Integr Physiol

December 2024

Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Aquatic Animal Breeding Center of Shanghai University Knowledge Service Platform, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The present study investigated the changes of expression and localization of PtVg mRNA, tissue Vg/ Vn concentrations, the contents of progesterone and 17ß-estradiol during the ovarian development of P. trituberculatus. The results showed that: 1) The most abundant mRNA levels of PtVg were found in stage IV, and hepatopancreatic PtVg mRNA was markedly greater than that in ovaries from stage II to stage V.

View Article and Find Full Text PDF

Mixed exposure to PFOA and PFOS induces oocyte apoptosis and subfertility in mice by activating the Hippo signaling pathway.

Reprod Toxicol

December 2024

Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are synthetic perfluorinated compounds known for their persistence in the environment and reproduction toxicity. PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have been identified in the follicular fluid of infertile women. However, the specific of PFOA and PFOS mixture on oocyte quality and female fertility remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!