Targeting CYP51 for drug design by the contributions of molecular modeling.

Fundam Clin Pharmacol

Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas (LAMCIFAR), Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Avenida São José do Barreto 767, CEP 27965-045, Macaé, RJ, Brazil.

Published: February 2017

CYP51 is an enzyme of sterol biosynthesis pathway present in animals, plants, protozoa and fungi. This enzyme is described as an important drug target that is still of interest. Therefore, in this work, we reviewed the structure and function of CYP51 and explored the molecular modeling approaches for the development of new antifungal and antiprotozoans that target this enzyme. Crystallographic structures of CYP51 of some organisms have already been described in the literature, which enable the construction of homology models of other organisms' enzymes and molecular docking studies of new ligands. The binding mode and interactions of some new series of azoles with antifungal or antiprotozoan activities has been studied and showed important residues of the active site. Molecular modeling is an important tool to be explored for the discovery and optimization of CYP51 inhibitors with better activities, pharmacokinetics, and toxicological profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1111/fcp.12230DOI Listing

Publication Analysis

Top Keywords

molecular modeling
12
targeting cyp51
4
cyp51 drug
4
drug design
4
design contributions
4
molecular
4
contributions molecular
4
cyp51
4
modeling cyp51
4
cyp51 enzyme
4

Similar Publications

Role of extracellular vesicles in the pathogenesis of mosquito-borne flaviviruses that impact public health.

J Biomed Sci

January 2025

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.

Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.

View Article and Find Full Text PDF

Prevalence of intestinal parasites and Helicobacter pylori co-infection in people with gastrointestinal symptoms in Africa: a systematic review and meta-analysis.

BMC Infect Dis

January 2025

Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

Background: Gastrointestinal infections caused by intestinal parasites and Helicobacter pylori are significant public health issues in Africa, where poor sanitation and limited access to healthcare contribute to high disease burden. Since there was no previous pooled data regarding the intestinal parasites and Helicobacter pylori co-infections among gastrointestinal symptomatic patients in the African context, this review aimed to determine the overall prevalence of intestinal parasites and Helicobacter pylori co-infection in people with gastrointestinal symptoms in Africa.

Methods: The current review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) standards and registered in the International Prospective Register of Systematic Reviews (PROSPERO; CRD42024598993).

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!