The assembly of mutated and wild type monomers into functional heterodimeric hemeproteins has provided important mechanistic insights. As in the case of NO synthase (NOS), the existing methods to make such heterodimeric NOSs are inefficient and labor intensive with typical yields of about 5%. We have found that expression of neuronal NOS heterodimers in insect cells, where we take advantage of an exogenous heme-triggered chaperone-assisted assembly process, provides an approximately 43% yield in heterodimeric NOS. In contrast, in Escherichia coli little heterodimerization occurred. Thus, insect cells are preferred and may represent a valuable method for assembly of other dimeric hemeproteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002378 | PMC |
http://dx.doi.org/10.1016/j.ab.2016.07.031 | DOI Listing |
Protein J
January 2025
Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA.
The Ferguson plot is a simple method for determining the molecular weight of native proteins and their complexes. In this study, we tested the validity of the Ferguson plot based on agarose native gel electrophoresis using multimeric chaperone protein, ClpB, derived from a moderate halophile that forms a native hexamer. The Ferguson plot showed a single band with a molecular weight of 1,500 kDa, approximately twice the size of the native hexamer.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China.
Natural materials with highly oriented heterogeneous structures are often lightweight but strong, stiff but tough and durable. Such an integration of diverse incompatible mechanical properties is highly desired for man-made materials, especially weak hydrogels which are lack of high-precision structural design. Herein, we demonstrate the fabrication of hierarchically aligned heterogeneous hydrogels consisting of a compactly crosslinked sheath and an aligned porous core with alignments of nanofibrils at multi-scales by a sequential self-assembly assisted salting out method.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
January 2025
Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Department of Clinical Science, University of Bergen, Bergen, Norway. Electronic address:
Purpose: To understand the mechanisms of carbapenem-resistant Klebsiella pneumoniae (CRKP) from Tanzania and characterize the genomes carrying the carbapenemase genes.
Methods: Clinical CRKP isolates were selected from ongoing antimicrobial-resistant surveillance at Muhimbili National Hospital, Dar es Salaam, Tanzania. Whole-genome sequencing was performed utilizing Illumina and Nanopore platforms.
Biomed Pharmacother
January 2025
Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil. Electronic address:
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Department of Biomedical Science and Environmental Biology, School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:
Anti-mullerian hormone (AMH) detection receives much attention since it is used as an ideal biomarker for quantitative assessment of ovarian reserve. The present study proposed a first report on the use of MOF-on-MOF as an electrochemical sensor for recognizing AMH in buffer and serum media. The MOF-on-MOF, MIL-88 B@UiO66NH was synthesized by the internal extended growth method (IEGM) involving MIL-88 B on UiO66NH by in situ method for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!