Tuning Cationic Block Copolymer Micelle Size by pH and Ionic Strength.

Biomacromolecules

Department of Chemistry, and ‡Department of Chemical Engineering & Materials Science, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.

Published: September 2016

The formation, morphology, and pH and ionic strength responses of cationic block copolymer micelles in aqueous solutions have been examined in detail to provide insight into the future development of cationic micelles for complexation with polyanions such as DNA. Diblock polymers composed of a hydrophilic/cationic block of N,N-dimethylaminoethyl methacrylate (DMAEMA) and a hydrophobic/nonionic block of n-butyl methacrylate (BMA) were synthesized [denoted as DMAEMA-b-BMA (X-Y), where X = DMAEMA molecular weight and Y = molecular weight of BMA in kDa]. Four variants were created with block molecular weights of 14-13, 14-23, 27-14, 27-29 kDa and low dispersities less than 1.10. The amphiphilic polymers self-assembled in aqueous conditions into core-shell micelles that ranged in size from 25-80 nm. These cationic micelles were extensively characterized in terms of size and net charge in different buffers over a wide range of ionic strength (0.02-1 M) and pH (5-10) conditions. The micelle core is kinetically trapped, and the corona contracts with increasing pH and ionic strength, consistent with previous work on micelles with glassy polystyrene cores, indicating that the corona properties are independent of the dynamics of the micelle core. The contraction and extension of the corona scales with solution ionic strength and charge fraction of the amine groups. The aggregation numbers of the micelles were obtained by static light scattering, and the Rg/Rh ratios are close to that of a hard sphere. The zeta potentials of the micelles were positive up to two pH units above the corona pKa, suggesting that applications relying on micelle charge for stability should be viable over a wide range of solution conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.6b00654DOI Listing

Publication Analysis

Top Keywords

ionic strength
20
cationic block
8
block copolymer
8
cationic micelles
8
molecular weight
8
wide range
8
micelle core
8
micelles
7
block
5
ionic
5

Similar Publications

The current investigation assessed the beneficial impacts of dietary sodium chloride (NaCl) on the growth performance, oxidant/antioxidant, and immune responses of Nile tilapia (Oreochromis niloticus) and its adaptability to different salinity levels. After acclimating the fish to the laboratory conditions for 2 weeks, the acclimated fish (10.5 ± 0.

View Article and Find Full Text PDF

Background: The Diffusive Gradients in Thin Films (DGT) technique has become the most widely used passive sampling method for inorganic compounds. This widespread adoption can be partly attributed to the development of new binding phases that facilitate the sampling of numerous analytes. In contrast, to date, the DGT sampler for inorganic compounds has not seen any significant design improvements.

View Article and Find Full Text PDF

Microplastics in soils: A comprehensive review.

Sci Total Environ

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Microplastics (MPs) have become pervasive pollutants in terrestrial ecosystems, raising significant ecological risks and human health concerns. Despite growing attention, a comprehensive understanding of their quantification, sources, emissions, transport, degradation, and accumulation in soils remains incomplete. This review synthesizes the current knowledge on the anthropogenic activities contributing to soil MP contamination, both intentional and unintentional behaviors, spanning sectors including agriculture, domestic activities, transportation, construction, and industry.

View Article and Find Full Text PDF

The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic contaminants (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset.

View Article and Find Full Text PDF
Article Synopsis
  • Solid-state polymer electrolytes (SPEs) are gaining attention for sodium metal batteries (SMBs) due to their flexibility and lower interfacial resistance, but they struggle with sodium ion conductivity and unstable interfaces.
  • A novel composite electrolyte called PPNM is created by integrating a 3D copper metal organic framework (Cu-MOF) with polyacrylonitrile (PAN) fibers and polyethylene oxide (PEO), enhancing ionic conductivity and sodium ion movement.
  • The improved stability and performance of the PPNM electrolyte lead to strong cycling results for Na3V2(PO4)3@C/PPNM/Na full cells, making it a promising strategy for advancing solid-state SMB technology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!