The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976776PMC
http://dx.doi.org/10.1016/j.celrep.2016.06.077DOI Listing

Publication Analysis

Top Keywords

replication stress
24
rad51 recruitment
12
gc-rich repetitive
12
repetitive sequences
12
recruitment gc-rich
8
sequences response
8
replication
8
response replication
8
rad51
6
stress
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!