How visual information is encoded in spikes of retinal ganglion cells (RGCs) is essential in visual neuroscience. In the present study, we investigated the coding properties of mouse RGCs with dual-peak patterns with respect to visual stimulus intervals. We first analyzed the response properties, and observed that the latencies and spike counts of the two response peaks in the dual-peak pattern exhibited systematic changes with the preceding light-OFF interval. We then applied linear discriminant analysis (LDA) to assess the relative contributions of response characteristics of both peaks in information coding regarding the preceding stimulus interval. It was found that for each peak, the discrimination results were far better than chance level based on either latency or spike count, and were further improved by using the combination of the two parameters. Furthermore, the best discrimination results were obtained when latencies and spike counts of both peaks were considered in combination. In addition, the correct rate for stimulation discrimination was higher when RGC population activity was considered as compare to single neuron's activity, and the correct rate was increased with the group size. These results suggest that rate coding, temporal coding, and population coding are all involved in encoding the different stimulus-interval patterns, and the two response peaks in the dual-peak pattern carry complementary information about stimulus interval.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949255PMC
http://dx.doi.org/10.3389/fncom.2016.00075DOI Listing

Publication Analysis

Top Keywords

coding properties
8
properties mouse
8
retinal ganglion
8
ganglion cells
8
dual-peak patterns
8
patterns respect
8
stimulus intervals
8
latencies spike
8
spike counts
8
response peaks
8

Similar Publications

Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous disorders characterized by progressive photoreceptor degeneration and irreversible vision loss. MicroRNAs (miRNAs), a class of endogenous non-coding RNAs with post-transcriptional regulatory properties, are known to play a major role in retinal function, both in physiological and pathological conditions. Given their ability to simultaneously modulate multiple molecular pathways, miRNAs represent promising therapeutic tools for disorders with high genetic heterogeneity, such as IRDs.

View Article and Find Full Text PDF

Terahertz reconfigurable intelligent surfaces (RIS) stand out from conventional phased arrays thanks to their unique electromagnetic properties and intelligent interconnect paradigms. They are a vital technology for terahertz wireless communication and radar detection systems. Compared with 1-bit coding metasurfaces, 2-bit coding metasurfaces offer significant advantages such as single beam steering and reduced quantization errors.

View Article and Find Full Text PDF

Terahertz modulation technology based on programmable metasurfaces can respond in real time to external signals or environmental changes, enabling flexible and adaptive control of terahertz waves. This technology demonstrates significant potential and importance across various fields, including communication, imaging, scientific research, security monitoring, and industrial applications. This paper proposes a terahertz programmable metasurface based on solid-state plasma, utilizing solid-state plasma devices to achieve dynamic control of properties such as the amplitude and phase of terahertz waves.

View Article and Find Full Text PDF

Re-locative guided search optimized self-sparse attention enabled deep learning decoder for quantum error correction.

Sci Rep

January 2025

Department of Mathematics, School of Advanced Sciences, VIT-AP University, Besides AP Secretariate, Amaravati, Andhra Pradesh, 522237, India.

Heavy hexagonal coding is a type of quantum error-correcting coding in which the edges and vertices of a low-degree graph are assigned auxiliary and physical qubits. While many topological code decoders have been presented, it is still difficult to construct the optimal decoder due to leakage errors and qubit collision. Therefore, this research proposes a Re-locative Guided Search optimized self-sparse attention-enabled convolutional Neural Network with Long Short-Term Memory (RlGS2-DCNTM) for performing effective error correction in quantum codes.

View Article and Find Full Text PDF

Background/purpose: Oral submucous fibrosis (OSF) is a premalignant condition of the oral cavity, and its pathogenesis remains largely unknown. A multitude of non-coding RNAs are aberrantly expressed in OSF, and their implication for the development of OSF is a matter meriting investigation.

Materials And Methods: The functional role of long non-coding RNA NCK1-AS1 in myofibroblast activation of fibrotic buccal mucosal fibroblasts (fBMFs) derived from OSF tissues was assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!