The toxic metal lead is a widespread environmental polutant that can adversely affect human health. However, the underlying mechanisms of lead-induced toxicity are still largely unknown. The mechanism of lead toxicity was presumed to involve cross reaction between Pb(2+) and Ca(2+) with calmodulin dependent systems. The aim of the present study was thus to identify differential expression of calmodulin-related genes in the spleen of lead-exposed mice. We performed microarray analysis to identify differentially expressed genes. RNAs from spleen tissue of lead exposed animals (n=6) and controls (n=6) were converted to labeled cRNA and hybridized to Illumina mouse WG-6_v2_Bead Chip. Expression profiles were analyzed using Illumina BeadStudio Application. Real-time RT-PCR was conducted to validate the microarray data. By microarray analysis 5 calmodulin-related genes (MAP2K6, CAMKK2, CXCR4, PHKA2, MYLK) were found to be differently expressed in lead exposed compared with control mice (p<0.05). The results of Real-time RT-PCR showed that MAP2K6 and CAMKK2 were up-regulated and CXCR4 was down-regulated in lead exposure, but there were no significant differences in PHKA2 and MYLK expression between the lead exposed and control group. These results show that lead exposure produced significant changes in expression of a variety of genes in the spleen and can affect calmodulin-related gene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961913 | PMC |
http://dx.doi.org/10.1515/intox-2015-0024 | DOI Listing |
Front Plant Sci
May 2022
Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Science, Weifang, China.
Peanut is an oil crop with important economic value that is widely cultivated around the world. It blooms on the ground but bears fruit underground. When the peg penetrates the ground, it enters a dark environment, is subjected to mechanical stress from the soil, and develops into a normal pod.
View Article and Find Full Text PDFMol Syndromol
February 2022
Department of Pediatric Neurology, Dr. Lutfi Kirdar City Hospital, İstanbul, Turkey.
Autosomal recessive primary microcephaly (MCPH) is a uncommon disorder due to congenital deficiency in the development of the cerebral cortex, characterized by a head circumference below 2 SD. MCPH is a group of diseases with genetic heterogeneity and has been reported by the Online Mendelian Inheritance In Man® (OMIM) database and associated with 25 different genes. It is known that MCPH cases are most frequently associated with abnormal spindle-like, microcephaly-associated () gene mutations.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
May 2022
Department of Forensic Medicine and Clinical Toxicology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt.
Lead (Pb) is one of the most common toxic heavy metals. It is a well-known testicular toxicant. Selenium nanoparticles (SeNPs) are a more effective form of elemental selenium that reduces drug-induced toxicities.
View Article and Find Full Text PDFPlants (Basel)
March 2021
Lab of Pear Genetic Improvement and Germplasm Innovation, Qingdao Agricultural University, Qingdao 266109, China.
Red pear is a popular fruit that is appreciated for its attractive and distinctive appearance and mild flavor. In this study, we investigated the mechanism underlying the red coloration of pear skin using the 'Xinqihong' cultivar-which was selected as a spontaneous bud sport mutant of the 'Xinli 7'( Rehd.) variety and has a stronger red color that is retained in the mature fruit-as an experimental model.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
November 2020
University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
The crucial role of phosphate (Pi) for plant alongside the expected depletion of non-renewable phosphate rock have created an urgent need for phosphate-efficient rice varieties. In this study, 157 greenhouse-grown Vietnamese rice landraces were treated under Pi-deficient conditions to discover the genotypic variation among biochemical traits, including relative efficiency of phosphorus use (REP), relative root to shoot weight ratio (RRSR), relative physiological phosphate use efficiency (RPPUE), and relative phosphate uptake efficiency (RPUpE). Plants were grown in Yoshida nutrient media with either a full (320 μM) or a low Pi supply (10 μM) over six weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!