Alzheimer's disease (AD), one of the neurodegenerative disorders that may develop in the elderly, is characterized by the deposition of β‑amyloid protein (Aβ) and extensive neuronal cell death in the brain. Neuregulin‑1 (Nrg1)‑mediated intercellular and intracellular communication via binding to ErbB receptors regulates a diverse set of biological processes involved in the development of the nervous system. In the present study, a linear correlation was identified between Nrg1 and phosphorylated ErbB (pNeu and pErbB4) receptors in a human cortical tissue microarray. In addition, increased expression levels of Nrg1, but reduced pErbB receptor levels, were detected in the frontal lobe of a patient with AD. Western blotting and immunofluorescence staining were subsequently performed to uncover the potential preventive role of Nrg1 in cortical neurons affected by the neurodegenerative processes of AD. It was observed that the expression of Nrg1 increased as the culture time of the cortical neurons progressed. In addition, H2O2 and Aβ1‑42, two inducers of oxidative stress and neuronal damage, led to a dose‑dependent decrease in Nrg1 expression. Recombinant Nrg1β, however, was revealed to exert a pivotal role in preventing oxidative stress and neuronal damage from occurring in the mouse cortical neurons. Taken together, these results suggest that changes in Nrg1 signaling may influence the pathological development of AD, and exogenous Nrg1 may serve as a potential candidate for the prevention and treatment of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991731 | PMC |
http://dx.doi.org/10.3892/mmr.2016.5542 | DOI Listing |
iScience
January 2025
Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China.
Learned action sequences are suggested to be organized hierarchically, but how the various hierarchical levels are processed by different cortical regions remains largely unknown. By training monkeys to perform heterogeneous saccade sequences, we investigated the role of the dorsolateral prefrontal cortex (DLPFC) and the lateral intraparietal cortex (LIP) in sequence planning and execution. The electrophysiological recording revealed that sequence-level initiation information was mostly signaled by DLPFC neurons, whereas subsequence-level transition was largely encoded by LIP neurons.
View Article and Find Full Text PDFUnilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
Introduction: The link between overload brain iron and transcriptional/cellular signatures in Alzheimer's disease (AD) remains inconclusive.
Methods: Iron deposition in 41 cortical and subcortical regions of 30 AD patients and 26 healthy controls (HCs) was measured using quantitative susceptibility mapping (QSM). The expression of 15,633 genes was estimated in the same regions using transcriptomic data from the Allen Human Brain Atlas (AHBA).
Nat Commun
January 2025
Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.
View Article and Find Full Text PDFCell Death Dis
January 2025
Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy.
Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!