A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The fibronectin III-1 domain activates a PI3-Kinase/Akt signaling pathway leading to αvβ5 integrin activation and TRAIL resistance in human lung cancer cells. | LitMetric

Background: Fibronectin is a mechanically sensitive protein which is organized in the extracellular matrix as a network of interacting fibrils. The lung tumor stroma is enriched for fibronectin which is thought to contribute to metastasis and drug resistance. Fibronectin is an elastic, multi-modular protein made up of individually folded domains, some of which can stretch in response to increased mechanical tension. Very little is known about the relationship of fibronectin's unfolded domains to lung cancer resistance to chemotherapy. In the present study, we evaluated the impact of unfolding the first Type III domain of fibronectin (FnIII-1c) on TNF-related apoptosis inducing ligand (TRAIL) resistance.

Methods: NCI-H460 non-small cell lung cancer cells were treated with FnIII-1c then assessed for TRAIL-induced apoptosis. Subsequent analysis of FnIII-1c-mediated signaling pathways was also completed. Human non-small cell lung cancer tissue sections were assessed for the expression of vitronectin by immunohistochemistry.

Results: FnIII-1c inhibited TRAIL-induced activation of caspase 8 and subsequent apoptosis in NCI-H460 lung cancer cells. FnIII-1c treatment was associated with the activation of the phosphatidylinositol-3-kinase/alpha serine/threonine kinase (PI3K/Akt) pathway and the αvβ5 integrin receptor for vitronectin, both of which were required for TRAIL resistance. Immunohistochemical staining of sections from non-small cell lung cancers showed that vitronectin was localized around blood vessels and in the tumor-stroma interface.

Conclusions: Unfolding of Type III domains within the fibronectin matrix may promote TRAIL resistance through the activation of a PI3K/Akt/αvβ5 signaling axis and point to a novel mechanism by which changes in secondary structure of fibronectin contribute to cancer cell resistance to apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970220PMC
http://dx.doi.org/10.1186/s12885-016-2621-6DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
trail resistance
12
cancer cells
12
non-small cell
12
cell lung
12
αvβ5 integrin
8
unfolding type
8
type iii
8
fibronectin
7
lung
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!