We have investigated the thermally induced tensile strain in Ge-on-Si for use in optical sources of interconnection systems. Epitaxial Ge layers were grown using a two-step hetero-epitaxy at low and high temperatures. The as-grown Ge-on-Si was then annealed for direct bandgap conversion. A tensile strain of 0.06% in the as-grown Ge increased to 0.31% after annealing at 850 degrees C. As the thermal budget of this post-growth anneal was increased, the tensile strain of relaxed Ge-on-Si also increases and a Si-Ge alloy forms. Physical characterization indicates a tunable tensile stain in Ge-on-Si can be realized using post-growth annealing, which will allow for a wide range of frequencies in optical interconnections.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2016.12233DOI Listing

Publication Analysis

Top Keywords

tensile strain
16
thermally induced
8
induced tensile
8
epitaxial layers
8
layers grown
8
grown two-step
8
tensile
5
strain
4
strain epitaxial
4
two-step e-beam
4

Similar Publications

Characterization and application of fluorescent hydrogel films with superior mechanical properties in detecting iron(Ⅲ) ions and ferroptosis in oral cancer.

Front Bioeng Biotechnol

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.

A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.

View Article and Find Full Text PDF

Objective: The aim of this study was to establish a three-dimensional finite element (FE) hydraulic pressure technique model and compare the biomechanical characteristics of the osteotome technique and the hydraulic pressure technique using three-dimensional finite element analysis (FEA).

Methods: Three FE models were created: the hydraulic pressure technique (M1), the osteotome technique with a Ø 1.6-mm osteotome (M2), and the osteotome technique with a Ø 3.

View Article and Find Full Text PDF

Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity.

ACS Appl Mater Interfaces

January 2025

Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.

The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.

View Article and Find Full Text PDF

Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses.

View Article and Find Full Text PDF

The Design, Synthesis, and Characterization of Photochromic and Mechanochromic Functional Fibers.

Macromol Rapid Commun

January 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China.

Mechanically responsive polymer materials have garnered significant interest due to their unique ability to respond to external forces, leading to groundbreaking applications in visual stress mapping and damage detection. However, their use in fibers remains relatively unexplored. In this study, a mechanoresponsive polymer is synthesized by incorporating a spiropyran (SP) mechanophore into a polyurethane backbone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!