Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology of neuropsychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022076PMC
http://dx.doi.org/10.1038/tp.2016.119DOI Listing

Publication Analysis

Top Keywords

risk genes
16
neuronal differentiation
12
neuropsychiatric disorders
12
genes implicated
12
genes
10
transcriptomic signatures
8
genes autism
8
autism spectrum
8
implicated asd
8
asd fxs
8

Similar Publications

Objectives: COVID-19 and systemic sclerosis (SSc) share multiple similarities in their clinical manifestations, alterations in immune response, and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc.

View Article and Find Full Text PDF

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

Transcriptome-Wide Association Study Identified Novel Blood Tissue Gene Biomarkers for Prostate Cancer Risk.

Prostate

January 2025

Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA.

Objective: A number of susceptibility genes in prostate tissue have been identified to be associated with prostate cancer (PCa) risk. However, the reported genes based on assessing prostate tissue could not fully explain PCa genetic susceptibility. It is believed that genes functioning in the immune system may fill in the gap of some missing heritability.

View Article and Find Full Text PDF

Role of pre-diagnostic reproductive factors on long-term (10 years or greater) survival of epithelial ovarian cancer: The Extreme study.

Int J Gynecol Cancer

January 2025

Danish Cancer Institute, Virus, Lifestyle and Genes, Copenhagen, Denmark; University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark; Rigshospitalet, Copenhagen University Hospital, Department of Gynecology, Copenhagen, Denmark. Electronic address:

Objective: Several reproductive factors are associated with ovarian cancer risk but the association with survival is less clear. The main aim was to examine the impact of pre-diagnostic reproductive factors on long-term ovarian cancer survival (≥10 years).

Methods: We included all women with epithelial ovarian cancer in Denmark, 1990-2014.

View Article and Find Full Text PDF

Glia contribute to the neuropathology of Parkinson disease (PD), but how they react opposingly to be beneficial or detrimental under pathological conditions, like promoting or eliminating SNCA/α-syn (synuclein alpha) inclusions, remains elusive. Here we present evidence that aux (auxilin), the homolog of the PD risk factor GAK (cyclin G associated kinase), regulates the lysosomal degradation of SNCA/α-syn in glia. Lack of glial GAK/aux increases the lysosome number and size, regulates lysosomal acidification and hydrolase activity, and ultimately blocks the degradation of substrates including SNCA/α-syn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!