Exact Distributions of Finite Random Matrices and Their Applications to Spectrum Sensing.

Sensors (Basel)

Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.

Published: July 2016

The exact and simple distributions of finite random matrix theory (FRMT) are critically important for cognitive radio networks (CRNs). In this paper, we unify some existing distributions of the FRMT with the proposed coefficient matrices (vectors) and represent the distributions with the coefficient-based formulations. A coefficient reuse mechanism is studied, i.e., the same coefficient matrices (vectors) can be exploited to formulate different distributions. For instance, the same coefficient matrices can be used by the largest eigenvalue (LE) and the scaled largest eigenvalue (SLE); the same coefficient vectors can be used by the smallest eigenvalue (SE) and the Demmel condition number (DCN). A new and simple cumulative distribution function (CDF) of the DCN is also deduced. In particular, the dimension boundary between the infinite random matrix theory (IRMT) and the FRMT is initially defined. The dimension boundary provides a theoretical way to divide random matrices into infinite random matrices and finite random matrices. The FRMT-based spectrum sensing (SS) schemes are studied for CRNs. The SLE-based scheme can be considered as an asymptotically-optimal SS scheme when the dimension K is larger than two. Moreover, the standard condition number (SCN)-based scheme achieves the same sensing performance as the SLE-based scheme for dual covariance matrix K = 2 . The simulation results verify that the coefficient-based distributions can fit the empirical results very well, and the FRMT-based schemes outperform the IRMT-based schemes and the conventional SS schemes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017349PMC
http://dx.doi.org/10.3390/s16081183DOI Listing

Publication Analysis

Top Keywords

random matrices
16
finite random
12
coefficient matrices
12
distributions finite
8
spectrum sensing
8
random matrix
8
matrix theory
8
matrices vectors
8
largest eigenvalue
8
condition number
8

Similar Publications

More Than the Sum of Its Parts: Disrupted Core Periphery of Multiplex Brain Networks in Multiple Sclerosis.

Hum Brain Mapp

January 2025

Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK.

Disruptions to brain networks, measured using structural (sMRI), diffusion (dMRI), or functional (fMRI) MRI, have been shown in people with multiple sclerosis (PwMS), highlighting the relevance of regions in the core of the connectome but yielding mixed results depending on the studied connectivity domain. Using a multilayer network approach, we integrated these three modalities to portray an enriched representation of the brain's core-periphery organization and explore its alterations in PwMS. In this retrospective cross-sectional study, we selected PwMS and healthy controls with complete multimodal brain MRI acquisitions from 13 European centers within the MAGNIMS network.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the dosiomics features of the interplay between CT density and dose distribution in lung SBRT plans, and to develop a model to predict treatment failure following lung SBRT treatment.

Methods: A retrospective study was conducted involving 179 lung cancer patients treated with SBRT at the University of Nebraska Medical Center (UNMC) between October 2007 and June 2022. Features from the CT image, Biological Effective Dose (BED) and five interaction matrices between CT and BED were extracted using radiomics mathematics.

View Article and Find Full Text PDF

With the beginning of the COVID-19 pandemic, wastewater-based epidemiology (WBE), which according to Larsen et al. (2021), describes the science of linking pathogens and chemicals found in wastewater to population-level health, received an enormous boost worldwide. The basic procedure in WBE is to analyse pathogen concentrations and to relate these measurements to cases from clinical data.

View Article and Find Full Text PDF

The design of efficient bacterial inactivation treatment in wastewater is challenging due to its numerous parameters and the complex composition of wastewater. Although solar photochemical processes (PCPs) provide energy-saving benefits, a balance must be maintained between bacterial inactivation efficiency and experimental costs. Predictive decision tools for bacterial inactivation under various conditions would significantly contribute to optimizing PCP design resources.

View Article and Find Full Text PDF

The objective of this systematic review and meta-analysis is to assess the efficacy of the biodegradable temporising matrix (BTM) (NovoSorb; PolyNovo Biomaterials Pty Ltd, Port Melbourne, Victoria, Australia) in the reconstruction of complex upper extremity wounds. The authors conducted a systematic review and meta-analysis as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines assessing the efficacy of BTM in complex upper extremity wound reconstruction. The primary outcome measures were successful BTM integration and the proportion of wounds healed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!