Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The stixel world is a simplification of the world in which obstacles are represented as vertical instances, called stixels, standing on a surface assumed to be planar. In this paper, previous approaches for stixel tracking are extended using a two-level scheme. In the first level, stixels are tracked by matching them between frames using a bipartite graph in which edges represent a matching cost function. Then, stixels are clustered into sets representing objects in the environment. These objects are matched based on the number of stixels paired inside them. Furthermore, a faster, but less accurate approach is proposed in which only the second level is used. Several configurations of our method are compared to an existing state-of-the-art approach to show how our methodology outperforms it in several areas, including an improvement in the quality of the depth reconstruction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017348 | PMC |
http://dx.doi.org/10.3390/s16081182 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!