Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells.

Int J Mol Sci

Dipartimento Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Edificio 16, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy.

Published: July 2016

We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation, and mitochondrial metabolic state in order to understand the cellular basis of the cytotoxic effect. Cell cycle analysis showed a perturbation of the rate of progression through the cycle, with aspects of redistribution of cells over different cycle phases for the two treatments. In addition, the results suggest that the two distinct classes of compounds under investigation could induce cell death by different preferential pathways, i.e., autophagy inhibition (the cocktail) or apoptosis promotion (the hybrid), thus confirming the enhanced potential of the hybrid approach vs. the combination approach in finely tuning the biological activities of target cells and also showing the hybrid compound as an additional promising drug-like molecule for the prevention or therapy of "aggressive" breast carcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000633PMC
http://dx.doi.org/10.3390/ijms17081235DOI Listing

Publication Analysis

Top Keywords

histone deacetylase
8
breast cancer
8
cancer cells
8
cell cycle
8
cells
5
biological hybrid
4
hybrid anticancer
4
anticancer agent
4
agent based
4
based kinase
4

Similar Publications

PRDX2 induces tumor immune evasion by modulating the HDAC3-Galectin-9 axis in lung adenocarcinoma cells.

J Transl Med

January 2025

Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China.

Background: PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target.

View Article and Find Full Text PDF

Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.

View Article and Find Full Text PDF

Acetylation-enhanced Sp1 transcriptional activity suppresses Mlph expression.

Sci Rep

January 2025

Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.

Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va.

View Article and Find Full Text PDF

NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit.

Nat Commun

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.

Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes.

View Article and Find Full Text PDF

Objectives: Exposure of gingival epithelial cells to butyrate, a short-chain fatty acid produced by dental plaque bacteria, cause cell death and subsequent damage-associated molecular pattern (DAMP) release. We investigated the effects of curcumin, a polyphenol extracted from turmeric, on butyrate-induced human gingival epithelial Ca9-22 cell death and DAMP release.

Methods: Ca9-22 cells were pretreated with curcumin before butyrate exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!