Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Potential energy profiles and electronic structural interpretation of the CO and H2 binding reactions to molybdenocene and tungstenocene complexes [MCp2] (M = Mo and W, Cp = cycropentadienyl) were studied using density functional theory calculations and ab initio multiconfigurational electronic structure calculations. Experimentally observed slow H2 binding was reasonably explained in terms of the spin-blocking effect. Electronic structural analysis at the minimum-energy intersystem crossing point (MEISCP) revealed that the singly occupied molecular orbital's π-bonding/σ-antibonding character in the M-CO/H2 moiety determines the energy levels of the MEISCP. Analysis of the reaction coordinate showed that the singlet-triplet gap significantly depends on the Cp-M-Cp angle. Therefore, not only the metal-ligand distance but also the Cp-M-Cp angle is an important reaction coordinate to reach the MEISCP, the transition state of H2 binding. The role of spin-orbit coupling is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.6b01187 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!