Outer membrane protein (OMP) biogenesis is critical to bacterial physiology because the cellular envelope is vital to bacterial pathogenesis and antibiotic resistance. The process of OMP biogenesis has been studied in vivo, and each of its components has been studied in isolation in vitro. This work integrates parameters and observations from both in vivo and in vitro experiments into a holistic computational model termed "Outer Membrane Protein Biogenesis Model" (OMPBioM). We use OMPBioM to assess OMP biogenesis mathematically in a global manner. Using deterministic and stochastic methods, we are able to simulate OMP biogenesis under varying genetic conditions, each of which successfully replicates experimental observations. We observe that OMPs have a prolonged lifetime in the periplasm where an unfolded OMP makes, on average, hundreds of short-lived interactions with chaperones before folding into its native state. We find that some periplasmic chaperones function primarily as quality-control factors; this function complements the folding catalysis function of other chaperones. Additionally, the effective rate for the β-barrel assembly machinery complex necessary for physiological folding was found to be higher than has currently been observed in vitro. Overall, we find a finely tuned balance between thermodynamic and kinetic parameters maximizes OMP folding flux and minimizes aggregation and unnecessary degradation. In sum, OMPBioM provides a global view of OMP biogenesis that yields unique insights into this essential pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995976PMC
http://dx.doi.org/10.1073/pnas.1601002113DOI Listing

Publication Analysis

Top Keywords

omp biogenesis
20
outer membrane
8
membrane protein
8
biogenesis
7
omp
7
dynamic periplasmic
4
periplasmic chaperone
4
chaperone reservoir
4
reservoir facilitates
4
facilitates biogenesis
4

Similar Publications

Outer membrane protein assembly mediated by BAM-SurA complexes.

Nat Commun

September 2024

Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.

The outer membrane is a formidable barrier that protects Gram-negative bacteria against environmental threats. Its integrity requires the correct folding and insertion of outer membrane proteins (OMPs) by the membrane-embedded β-barrel assembly machinery (BAM). Unfolded OMPs are delivered to BAM by the periplasmic chaperone SurA, but how SurA and BAM work together to ensure successful OMP delivery and folding remains unclear.

View Article and Find Full Text PDF

The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems.

View Article and Find Full Text PDF

The EnvZ-OmpR two-component system of regulates the expression of the and porin genes in response to medium osmolarity. However, certain mutations in confer pleiotropy by affecting the expression of genes of the iron and maltose regulons not normally controlled by EnvZ-OmpR. In this study, we obtained two novel and pleiotropic alleles, and , among revertants of a mutant with heightened envelope stress and an outer membrane (OM) permeability defect.

View Article and Find Full Text PDF

A team of chaperones play to win in the bacterial periplasm.

Trends Biochem Sci

August 2024

Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA. Electronic address:

The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation.

View Article and Find Full Text PDF

A minimum functional form of the Escherichia coli BAM complex constituted by BamADE assembles outer membrane proteins in vitro.

J Biol Chem

June 2024

Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; School of Medicine, Linyi University, Linyi, China. Electronic address:

The biogenesis of outer membrane proteins is mediated by the β-barrel assembly machinery (BAM), which is a heteropentomeric complex composed of five proteins named BamA-E in Escherichia coli. Despite great progress in the BAM structural analysis, the molecular details of BAM-mediated processes as well as the exact function of each BAM component during OMP assembly are still not fully understood. To enable a distinguishment of the function of each BAM component, it is the aim of the present work to examine and identify the effective minimum form of the E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!