Although common variable immunodeficiency (CVID) has long been considered as a group of primary Ab deficiencies, growing experimental data now suggest a global disruption of the entire adaptive immune response in a segment of patients. Oligoclonality of the TCR repertoire was previously demonstrated; however, the manner in which it relates to other B cell and T cell findings reported in CVID remains unclear. Using a combination approach of high-throughput TCRβ sequencing and multiparametric flow cytometry, we compared the TCR repertoire diversity between various subgroups of CVID patients according to their B cell immunophenotypes. Our data suggest that the reduction in repertoire diversity is predominantly restricted to those patients with severely reduced class-switched memory B cells and an elevated level of CD21(lo) B cells (Freiburg 1a), and may be driven by a reduced number of naive T cells unmasking underlying memory clonality. Moreover, our data indicate that this loss in repertoire diversity progresses with advancing age far exceeding the expected physiological rate. Radiological evidence supports the loss in thymic volume, correlating with the decrease in repertoire diversity. Evidence now suggests that primary thymic failure along with other well-described B cell abnormalities play an important role in the pathophysiology in Freiburg group 1a patients. Clinically, our findings emphasize the integration of combined B and T cell testing to identify those patients at the greatest risk for infection. Future work should focus on investigating the link between thymic failure and the severe reduction in class-switched memory B cells, while gathering longitudinal laboratory data to examine the progressive nature of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991247 | PMC |
http://dx.doi.org/10.4049/jimmunol.1600526 | DOI Listing |
Cell Death Differ
January 2025
Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination.
View Article and Find Full Text PDFFront Immunol
January 2025
Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.
View Article and Find Full Text PDFClin Exp Med
January 2025
Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, 510515, China.
Coexistence of hepatitis B surface antigen (HBsAg) and hepatitis B surface antibody (anti-HBs) has been observed in some chronic hepatitis B (CHB) patients (DP patients), but the clinical outcomes and comprehensive characterization of immune micro-environmental changes for this specific population remain inconclusive. In this study, we retrospectively analyze the prognosis of 305 patients in Foshan City, Guangdong Province, China, and also investigated the molecular immunology changes in HBsAg and anti-HBs double positive CHB patients (DP group), CHB patients who had recovered from IFN-ɑ treatment (RP group), and healthy controls (HC group) using T cell receptor (TCR) and B cell receptor (BCR) immune repertoire sequencing. Our findings revealed that 22.
View Article and Find Full Text PDFBiochem J
January 2025
Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada.
Type VI secretion systems (T6SSs) are widespread bacterial protein secretion machines that inject toxic effector proteins into nearby cells, thus facilitating both bacterial competition and virulence. Pseudomonas aeruginosa encodes three evolutionarily distinct T6SSs that each export a unique repertoire of effectors. Owing to its genetic tractability, P.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris, France.
Unlabelled: can colonize a wide variety of environments (e.g., freshwater, brackish, alkaline, or alkaline-saline water) and develop dominant and even permanent blooms that overshadow and limit the diversity of adjacent phototrophs, especially in alkaline and saline environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!