α-amylase is an important enzyme involved in starch degradation to provide energy to the germinating seedling. The present study was conducted to reveal structural and functional evolution of this gene among higher plants. Discounting polyploidy, most plant species showed only a single copy of the gene making multiple isoforms in different tissues and developmental stages. Genomic length of the gene ranged from 1472 bp in wheat to 2369 bp in soybean, and the size variation was mainly due to differences in the number and size of introns. In spite of this variation, the intron phase distribution and insertion sites were mostly conserved. The predicted protein size ranged from 414 amino acid (aa) in soybean to 449aa in Brachypodium. Overall, the protein sequence similarity among orthologs ranged from 56.4 to 97.4 %. Key motifs and domains along with their relative distances were conserved among plants although several species, genera, and class specific motifs were identified. The glycosyl hydrolase superfamily domain length varied from 342aa in soybean to 384aa in maize and sorghum while length of the C-terminal β-sheet domain was highly conserved with 61aa in all monocots and Arabidopsis but was 59aa in soybean and Medicago. Compared to rice, 3D structure of the proteins showed 89.8 to 91.3 % similarity among the monocots and 72.7 to 75.8 % among the dicots. Sequence and relative location of the five key aa required for the ligand binding were highly conserved in all species except rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-016-0505-0 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFCancer Res
January 2025
Karolinska Institutet, Stockholm, Stockholm, Sweden.
Transgenic mice and organoid models, such as three-dimensional tumoroid cultures, have emerged as powerful tools for investigating cancer development and targeted therapies. Yet, the extent to which these preclinical models recapitulate the cellular identity of heterogeneous malignancies, like neuroblastoma (NB), remains to be validated. Here, we characterized the transcriptional landscape of TH-MYCN tumors by single-cell RNA sequencing (scRNA-seq) and developed ex vivo tumoroids.
View Article and Find Full Text PDFHeliyon
January 2025
ICAR-IIRR, Indian Institute of Rice Research, Hyderabad, 500 030, India.
Arbuscular mycorrhizal Fungi (AMF) are essential in agriculture and are often inter-linked with glomalin-related soil protein (GRSP) production which supports binding of aggregates, enhanced SOC and biological attributes. However, conservation agricultural practices in agroecosystem may have significant impact on AMF diversity, GRSP and soil quality-related parameters (SQRPs). This current experiment was implemented to gauge AMF conization percentage (AMF-CP), GSRP and significant changes on critical SQRPs, and to investigate the linkages between AMF-CP, GRSP and SQRPs as influenced by synergistic tillage and weed management in CA.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Technology Park of Sardinia, Bioecopest Srl, SP 55 Km 8.400, Tramariglio, Alghero, SS, Italy.
Background: The increasing availability of sequenced genomes has enabled comparative analyses of various organisms. Numerous tools and online platforms have been developed for this purpose, facilitating the identification of unique features within selected organisms. However, choosing the most appropriate tools can be unclear during the initial stages of analysis, often requiring multiple attempts to match the specific characteristics of the data.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!