Gas chromatography-mass spectrometry analysis of constituent oil from dried Ganoderma lucidum was carried out. Fresh G. lucidum obtained from its natural environment was thoroughly washed with distilled water and air-dried for 2 weeks and the component oils were extracted and analyzed. Four predominant components identified were pentadecanoic acid, 14-methyl-ester (retention time [RT] = 19.752 minutes; percentage total = 25.489), 9,12-octadecadienoic acid (Z,Z)- (RT = 21.629 minutes and 21.663 minutes; percentage total = 25.054), n-hexadecanoic acid (RT = 20.153 minutes; percentage total = 24.275), and 9-octadecenoic acid (Z)-, methyl ester (RT = 21.297 minutes; percentage total = 13.027). The two minor oils identified were 9,12-octadecadienoic acid, methyl ester, (E,E)- and octadecanoic acid, methyl ester (RT = 21.246 minutes and 21.503 minutes; percentage total = 7.057 and 5.097, respectively).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/IntJMedMushrooms.v18.i4.100 | DOI Listing |
J Pharm Sci
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, POBOX-2457, Riyadh 11451, Kingdom of Saudi Arabia; Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia. Electronic address:
Background And Purpose: Liquid self-nanoemulsifying drug delivery systems (SNEDDS) face challenges related to stability, handling, and storage. In particular, lipophilic and unstable drugs, such as ramipril (RMP) and thymoquinone (THQ), face challenges in oral administration due to poor aqueous solubility and chemical instability. This study aimed to develop and optimize multi-layer self-nanoemulsifying pellets (ML-SNEP) to enhance the stability and dissolution of ramipril (RMP) and thymoquinone (THQ).
View Article and Find Full Text PDFUsing a single optical microfiber (OM) sensor for multi-parameter sensing can lead to significant demodulation error due to ill-conditioned matrices and nonlinear response characteristics. To address these issues, this paper proposes a novel specially packaged optical microfiber coupler combined with a silver mirror (OMCM). OMCM is combined with a mechanically enhanced sensitivity fiber Bragg grating (FBG) to form a temperature-pressure sensor.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Hochschule für Gesundheitsfachberufe in Eberswalde, Schicklerstraße 20, 16225, Eberswalde, Germany.
The benefits and risks of delivery should always be considered before initiating preinduction cervical ripening and labor induction. Understanding the benefits and potential complications is crucial for healthcare professionals to make informed decisions and provide optimal care. The research was conducted retrospectively between January 2019 and July 2022.
View Article and Find Full Text PDFQ J Nucl Med Mol Imaging
January 2025
Section of Nuclear Medicine and Diagnostic Imaging, International Atomic Energy Agency, Vienna, Austria.
Background: One can assess cortical defects on the early images of [99mTc]Tc-MAG3 renography. We aimed to assess interobserver and intraobserver reproducibility for detecting renal cortical defects using [99mTc]Tc-MAG3 for adults and children; identify causes for poor inter- and intraobserver reproducibility and to assess the effect of the kidney to background ratio (KTBR) on reproducibility.
Methods: One hundred adult and 200 pediatric renograms were included.
Rev Cardiovasc Med
January 2025
Cardiology Department, Université de Mons, 7000 Mons, Belgium.
Background: Neuromodulation has been shown to increase the efficacy of atrial fibrillation (AF) ablation procedures. However, despite its ability to influence the autonomic nervous system (ANS), the exact mechanism of action remains unclear. The activity of the ANS via the intracardiac nervous system (ICNS) can be inferred from heart rate variability (HRV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!