Synthesis of Arbitrary Quantum Circuits to Topological Assembly.

Sci Rep

Google Inc., Santa Barbara, California 93117, USA.

Published: August 2016

Given a quantum algorithm, it is highly nontrivial to devise an efficient sequence of physical gates implementing the algorithm on real hardware and incorporating topological quantum error correction. In this paper, we present a first step towards this goal, focusing on generating correct and simple arrangements of topological structures that correspond to a given quantum circuit and largely neglecting their efficiency. We detail the many challenges that will need to be tackled in the pursuit of efficiency. The software source code can be consulted at https://github.com/alexandrupaler/tqec.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969756PMC
http://dx.doi.org/10.1038/srep30600DOI Listing

Publication Analysis

Top Keywords

synthesis arbitrary
4
quantum
4
arbitrary quantum
4
quantum circuits
4
circuits topological
4
topological assembly
4
assembly quantum
4
quantum algorithm
4
algorithm highly
4
highly nontrivial
4

Similar Publications

XIS-PM: A daily spatiotemporal machine-learning model for PM in the contiguous United States.

Environ Res

January 2025

Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel.

Air-pollution monitoring is sparse across most of the United States, so geostatistical models are important for reconstructing concentrations of fine particulate air pollution (PM) for use in health studies. We present XGBoost-IDW Synthesis (XIS), a daily high-resolution PM machine-learning model covering the contiguous US from 2003 through 2023. XIS uses aerosol optical depth from satellites and a parsimonious set of additional predictors to make predictions at arbitrary points, capturing near-roadway gradients and allowing the estimation of address-level exposures.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

Hydrogen-substituted graphdiyne (HsGDY) is a two-dimensional material with an sp-sp carbon skeleton featuring a band gap and a porous structure that enhances ion diffusion. In previous reports, HsGDY growth was limited to metal substrates such as Cu, which then required transfer. Here, we developed a sandwich method that allows HsGDY to be grown directly on the target substrate.

View Article and Find Full Text PDF

Background: Iron deficiency (ID) is currently defined as a serum ferritin level <100 or 100 to 299 ng/mL with transferrin saturation (TSAT) <20%. Serum ferritin and TSAT are currently used to define absolute and functional ID. However, individual markers of iron metabolism may be more informative than current arbitrary definitions of ID.

View Article and Find Full Text PDF

'Splice-at-will' Cas12a crRNA engineering enabled direct quantification of ultrashort RNAs.

Nucleic Acids Res

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, P.R. China.

We present a robust 'splice-at-will' CRISPR RNA (crRNA) engineering mechanism that overcomes the limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in directly detecting ultrashort RNAs. In this strategy, an intact Cas12a crRNA can be split from almost any site of the spacer region to obtain a truncated crRNA (tcrRNA) that cannot activate Cas12a even after binding an auxiliary DNA activator. While splicing tcrRNAs with a moiety of ultrashort RNA, the formed combination can work together to activate Cas12a efficiently, enabling 'splice-at-will' crRNA engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!