CTX-M-140, a novel CTX-M-type extended-spectrum β-lactamase (ESBL), was identified in cephalosporin-resistant clinical isolates of Proteus mirabilis CTX-M-140 contained an alanine-to-threonine substitution at position 109 compared to its putative progenitor, CTX-M-14. When it was expressed in an Escherichia coli isogenic background, CTX-M-140 conferred 4- to 32-fold lower MICs of cephalosporins than those with CTX-M-14, indicating that the phenotype was attributable to this single substitution. For four mutants of CTX-M-14 that were constructed by site-directed mutagenesis (A109E, A109D, A109K, and A109R mutants), MICs of cephalosporins were similar to those for the E. coli host strain, which suggested that the alanine at position 109 was essential for cephalosporin hydrolysis. The kinetic properties of native CTX-M-14 and CTX-M-140 were consistent with the MICs for the E. coli clones. Compared with that of CTX-M-14, a lower hydrolytic activity against cephalosporins was observed for CTX-M-140. blaCTX-M-140 is located on the chromosome as determined by I-CeuI pulsed-field gel electrophoresis (I-CeuI-PFGE) and Southern hybridization. The genetic environment surrounding blaCTX-M-140 is identical to the sequence found in different plasmids with blaCTX-M-9-group genes among the Enterobacteriaceae Genome sequencing and analysis showed that P. mirabilis strains with blaCTX-M-140 have a genome size of ∼4 Mbp, with a GC content of 38.7% and 23 putative antibiotic resistance genes. Our results indicate that alanine at position 109 is critical for the hydrolytic activity of CTX-M-14 against oxyimino-cephalosporins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038311 | PMC |
http://dx.doi.org/10.1128/AAC.00822-16 | DOI Listing |
Molecules
January 2025
Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu and Zn ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
In the field of RNA therapy, innovative approaches based on adenosine deaminases acting on RNA (ADAR)-mediated site-directed RNA editing (SDRE) have been established, providing an exciting opportunity for RNA therapeutics. ADAR1 and ADAR2 enzymes are accountable for the predominant form of RNA editing in humans, which involves the hydrolytic deamination of adenosine (A) to inosine (I). This inosine is subsequently interpreted as guanosine (G) by the translational and splicing machinery because of their structural similarity.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
Ocean oil spills can severely impact ecosystems and disrupt marine biodiversity and habitats. Microbial remediation is an effective method for removing thin oil slick contamination. In this study, the adsorption and degradation of low-concentration oil spills by Chlorella vulgaris LH-1 immobilized in konjac glucomannan (KGM) aerogel were investigated.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Kashkin Research Institute of Medical Mycology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia.
is an emerging multidrug-resistant fungal pathogen causing nosocomial transmission and invasive infections with high mortality. This study aimed to investigate the genetic relationships, enzymatic activities, and drug-resistance profiles of isolates to evaluate the population and epidemiological diversity of candidiasis in Russia. A total of 112 clinical isolates of were analyzed from May 2017 to March 2023 in 18 hospitals across Saint Petersburg, the Leningrad Region, and Moscow.
View Article and Find Full Text PDFGels
December 2024
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania.
Hydrogels are a viable option for biomedical applications due to their biocompatibility, biodegradability, and ability to incorporate various healing agents while maintaining their biological efficacy. This study focused on the preparation and characterization of novel hybrid hydrogels enriched with the natural algae compound Ulvan for potential use in wound dressings. The characterization of the hydrogel membranes involved multiple methods to assess their structural, mechanical, and chemical properties, such as pH measurements, swelling, moisture content and uptake, gel fraction, hydrolytic degradation, protein adsorption and denaturation tests, rheological measurements, SEM, biocompatibility testing, and scratch wound assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!