The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M. tuberculosis During our studies on alternative inhibitors of the d-alanine pathway, we discovered that the canonical alanine racemase (Alr) inhibitor β-chloro-d-alanine (BCDA) is a very poor inhibitor of recombinant M. tuberculosis Alr, despite having potent antituberculosis activity. Through a combination of enzymology, microbiology, metabolomics, and proteomics, we show here that BCDA does not inhibit the d-alanine pathway in intact cells, consistent with its poor in vitro activity, and that it is instead a mechanism-based inactivator of glutamate racemase (MurI), an upstream enzyme in the same early stage of PG biosynthesis. This is the first report to our knowledge of inhibition of MurI in M. tuberculosis and thus provides a valuable tool for studying this essential and enigmatic enzyme and a starting point for future MurI-targeted antibacterial development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038272 | PMC |
http://dx.doi.org/10.1128/AAC.01249-16 | DOI Listing |
Methods Mol Biol
August 2024
Department of Food Management, Miyagi University, Sendai, Japan.
The D-amino acids of D-alanine, D-glutamic acid, and D-aspartic acid increase tasting evaluation scores of Sake, a Japanese traditional alcohol beverage. Sake is brewed using seed mash for growth of brewing yeast without growth of contaminating microorganisms. Kimoto is brewed using lactic acid bacteria growth to decrease pH.
View Article and Find Full Text PDFInfect Disord Drug Targets
August 2024
Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Sector-2, Phase-I, Dwarka, New Delhi, 110075, India
Background: Shiga Toxin-Producing Escherichia coli (E. coli O157:H7), capable of causing serious food-borne illnesses, is extensively studied and is known to be transmitted through animal reservoirs or person-to-person contact, leading to severe disease outbreaks. The emergence of antibiotic resistance in these strains, coupled with increased adverse effects of existing therapeutics, underscores the urgent need for alternative therapeutic strategies.
View Article and Find Full Text PDFMicrobiology (Reading)
August 2024
Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in . This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.
View Article and Find Full Text PDFSci Rep
August 2024
Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel.
In the search for the origin of Amyotrophic Lateral Sclerosis disease (ALS), we hypothesized earlier (Monselise, 2019) that D-amino acids produced by stressed microbiome may serve as inducers of the disease development. Many examples of D-amino acid accumulation under various stress conditions were demonstrated in prokaryotic and eukaryotic cells. In this work, wild-type Escherichia coli, members of the digestive system, were subjected to carbon and nitrogen starvation stress.
View Article and Find Full Text PDFBMC Microbiol
April 2024
Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!