Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. These measures are urgently needed if we are to protect healthy brain development so that current and future generations can reach their fullest potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937840PMC
http://dx.doi.org/10.1289/EHP358DOI Listing

Publication Analysis

Top Keywords

neurodevelopmental disorders
12
brain development
12
chemicals
10
project tendr
8
tendr targeting
8
targeting environmental
8
environmental neuro-developmental
8
neuro-developmental risks
8
consensus statement
8
unacceptably high
8

Similar Publications

Background/aim: Functional asymmetry in the upper extremities may occur in infants with neuromotor problems due to neurodevelopmental or musculoskeletal disorders. The aim of this study was to investigate the validity and reliability of the Turkish version of the Infant Motor Activity Log (IMAL-T), which assesses the frequency (how often) and quality (how well) of the affected arm usage during activities in infants with functional asymmetry in the upper extremities.

Materials And Methods: The IMAL-T was administered face-to-face to the parents of 102 infants [60 infants at high risk of developing cerebral palsy (CP) and 42 infants with brachial plexus birth injury (BPBI)], aged 6-24 months, with functional asymmetry in the upper extremities.

View Article and Find Full Text PDF

Background: Developmental and epileptic encephalopathies (DEE) are rare but severe neurodevelopmental disorders characterised by early-onset seizures often combined with developmental delay, behavioural and cognitive deficits. Treatment for DEEs is currently limited to seizure control and provides no benefits to the patients' developmental and cognitive outcomes. Genetic variants are the most common cause of DEE with KCNQ2 being one of the most frequently identified disease-causing genes.

View Article and Find Full Text PDF

Growing evidence supports a role for dysregulated neuroinflammation in autism. However, the underlying mechanisms of microglia-evoked neuroinflammation in the development of autistic phenotypes have not been elucidated. This study aimed to investigate the role and underlying mechanisms of microglial S100 calcium-binding protein A9 (S100A9) in autistic phenotypes.

View Article and Find Full Text PDF

IUPHAR Review: Targeted Therapies of Signaling Pathways Based on the Gut Microbiome in Autism Spectrum Disorders: Mechanistic and Therapeutic Applications.

Pharmacol Res

December 2024

Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. Electronic address:

Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!