In the last years, nano-communications have attracted much attention as a newly promising research field. In particular, molecular communications, which exploit molecular nodes, are a powerful tool to implement communication functionalities in environments where the use of electromagnetic waves becomes critical, e.g., in the human body. In molecular communications, molecules such as proteins, DNA and RNA sequences are used to carry information. To this aim a novel approach relies on the use of genetically modified bacteria to transport enhanced DNA strands, called plasmids, where information can be encoded. Information transfer is thus based on bacteria motility, i.e., self-propelled motion, which under appropriate circumstances is exhibited by certain bacteria. It has been observed that bacteria motility presents many similarities with opportunistic forwarding. Currently the few studies on opportunistic communications among bacteria are based on simulations only. In this paper we propose an analytical model to characterize information spreading in bacterial nano-networks. To this purpose, an epidemic approach, similar to those used to model Delay Tolerant Networks (DTNs), is employed. We also derive two mathematical models which slightly differ. The first describes bacterial nano-networks where a single plasmid is disseminated according to an epidemic approach; the second, takes into account more complex mechanisms where multiple plasmids are disseminated as in realistic bacterial nano-networks. Numerical results being obtained are finally shown and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNB.2016.2594215 | DOI Listing |
Bioact Mater
September 2023
Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
New antimicrobial strategies are urgently needed to meet the challenges posed by the emergence of drug-resistant bacteria and bacterial biofilms. This work reports the facile synthesis of antimicrobial dynamic covalent nano-networks (aDCNs) composing antibiotics bearing multiple primary amines, polyphenols, and a cross-linker acylphenylboronic acid. Mechanistically, the iminoboronate bond drives the formation of aDCNs, facilitates their stability, and renders them highly responsive to stimuli, such as low pH and high HO levels.
View Article and Find Full Text PDFSmall
January 2023
Joint Centre of Translational Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325001, China.
Developing nature-inspired nanomaterials with enzymatic activity is essential in combating bacterial biofilms. Here, it is reported that incorporating the carboxylic acid in phenolic/Fe nano-networks can efficiently manipulate their peroxidase-like activity via the acidic microenvironment and neighboring effect of the carboxyl group. The optimal gallic acid/Fe (GA/Fe) nano-networks demonstrate highly enzymatic activity in catalyzing H O into oxidative radicals, damaging the cell membrane and extracellular DNA in Streptococcus mutans biofilms.
View Article and Find Full Text PDFAdv Healthc Mater
April 2022
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.
Antimicrobial resistance (AMR) develops when bacteria no longer respond to conventional antimicrobial treatment. The limited treatment options for resistant infections result in a significantly increased medical burden. Antimicrobial peptides offer advantages for treatment of resistant infections, including broad-spectrum activity and lower risk of resistance development.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
September 2016
In the last years, nano-communications have attracted much attention as a newly promising research field. In particular, molecular communications, which exploit molecular nodes, are a powerful tool to implement communication functionalities in environments where the use of electromagnetic waves becomes critical, e.g.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2016
Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; Department of Chemical and Biomolecular Engineering, The National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore. Electronic address:
To improve antibiotic properties, poly(methyl methacrylate) (PMMA)-based bone cements are formulated with antibiotic and nanostructured materials, such as hydroxyapatite (HAP) nanorods, carbon nanotubes (CNT) and mesoporous silica nanoparticles (MSN) as drug carriers. For nonporous HAP nanorods, the release of gentamicin (GTMC) is not obviously improved when the content of HAP is below 10%; while the high content of HAP shows detrimental to mechanical properties although the release of GTMC can be substantially increased. As a comparison, low content of hollow nanostructured CNT and MSN can enhance drug delivery efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!