Exploring novel electrode materials is critical for the development of a next-generation rechargeable magnesium battery with high volumetric capacity. Here, we showed that a distinct amorphous molybdenum sulfide, being a coordination polymer of disulfide-bridged (Mo3S11) clusters, has great potential as a rechargeable magnesium battery cathode. This material provided good reversible capacity, attributed to its unique structure with high flexibility and capability of deformation upon Mg insertion. Free-terminal disulfide moiety may act as the active site for reversible insertion and extraction of magnesium.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b02593DOI Listing

Publication Analysis

Top Keywords

rechargeable magnesium
12
magnesium battery
12
disulfide-bridged mo3s11
8
mo3s11 cluster
4
cluster polymer
4
polymer molecular
4
molecular dynamics
4
dynamics application
4
application electrode
4
electrode material
4

Similar Publications

Next-generation battery technologies need to consider their environmental impact throughout the whole cycle life, which has brought new chemistries based on earth-abundant elements to the spotlight. Rechargeable calcium batteries are such an emerging technology, which shows the potential to provide high cell voltage and high energy density close to lithium-ion batteries. Additionally, the use of Ca2+ as a charge carrier renders significant sustainable values.

View Article and Find Full Text PDF

Engineering Heterointerface to Synergistically Regulate Kinetics and Stress of Copper-Cobalt Selenide toward Reversible Magnesium/Lithium Hybrid Batteries.

Nano Lett

November 2024

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Metal chalcogenide-based cathodes are crucial for the development of rechargeable magnesium batteries, yet the strong electrostatic interactions of Mg result in slow ion transport and high polarization. The Mg/Li hybrid battery holds promise for enhancing the energy storage capability. Herein, we establish a system that utilizes (Co,Cu)Se/CoSe heterostructure grown on carbon cloth as the cathode and APC-LiCl as a dual-salt electrolyte to achieve high reversible capacity, enhanced cyclic stability, and impressive rate performance.

View Article and Find Full Text PDF

Context: In recent years, rechargeable batteries have received considerable attention as a way to improve energy storage efficiency. Anodic (negative) electrodes based on Janus two-dimensional (2D) monolayers are among the most promising candidates. In this effort, the adsorption and diffusion of these Li, Na, and Mg ions on and through Janus 2D-TiSSe as anodic material was investigated by means of periodic DFT-D calculations.

View Article and Find Full Text PDF

On the Origin of Capacity Increase in Rechargeable Magnesium Batteries with Manganese Oxide Cathodes and Copper Metal Current Collectors.

Angew Chem Int Ed Engl

November 2024

National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.

Rechargeable magnesium batteries (RMBs), with Cu as positive electrode current collector (CC), typically display a gradual capacity increase with cycling. Whereas the origin of this was suggested in gradual active material electro-activation, the fact that this is prevalent in many positive electrode material systems remains unexplained. Herein, we elucidate the underlying mechanism through a series of multiscale joint operando X-ray characterizations, including operando synchrotron X-ray diffraction and imaging technology.

View Article and Find Full Text PDF

Iodine Boosted Fluoro-Organic Borate Electrolytes Enabling Fluent Ion-Conductive Solid Electrolyte Interphase for High-Performance Magnesium Metal Batteries.

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.

Rechargeable magnesium batteries are regarded as a promising multi-valent battery system for low-cost and sustainable energy storage applications. Boron-based organic magnesium salts with terminal substituent fluorinated anions (Mg[B(OR)], R=fluorinated alkyl) have exhibited impressive electrochemical stability and oxidative stability. Nevertheless, their deployment is hindered by the complicated synthesis routes and the surface passivation of Mg metal anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!