Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/36/365302 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
This study explores the hydrogen generation potential via water-splitting reactions under UV-vis radiation by using a synergistic assembly of ZnO nanoparticles integrated with MoS, single-walled carbon nanotubes (SWNTs), and crystalline silicon nanowires (SiNWs) to create the MoS-SiNWs-SWNTs@ZnONPs nanocomposites. A comparative analysis of MoS synthesized through chemical and physical exfoliation methods revealed that the chemically exfoliated MoS exhibited superior performance, thereby being selected for all subsequent measurements. The nanostructured materials demonstrated exceptional surface characteristics, with specific surface areas exceeding 300 m g.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary.
Engineering ceramics and their composites are widely used owing to their excellent properties, including high wear, corrosion and heat resistance, low friction coefficient, and low thermal conductivity; thus, the current paper presents a comprehensive review of the most common types of engineering ceramics, demonstrating their key properties, advantages, potential applications, and challenges. This paper also provides prevailing methods for tackling the engineering ceramic challenges and maximizing their applicability. This review paper focuses on alumina (AlO), silicon carbide (SiC), zirconia (ZrO), aluminum nitride (AlN), and silicon nitride (SiN), and explores their usability in automotive, aerospace, and tribological applications.
View Article and Find Full Text PDFHeliyon
August 2024
Department of Mathematics & Physics, North South University (NSU), Dhaka, Bangladesh.
This article investigates the convective thermal and solutal exchange from the active walls of a trapezium chamber which is filled with multi-walled carbon nanotubes (MWCNT)-silicon dioxide (SiO)-ethylene glycol-water hybrid nano-coolant. The hybrid nano-coolant exhibits non-Newtonian shear-thinning rheology and is modeled by the power-law viscosity as per an exploratory report. The convection is generated by both the thermal and solutal buoyancy forces in the presence of a magnetic field.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China. Electronic address:
Macro-assembled silicon-based films can be taken into account as a possible anode material for the lithium ion batteries (LIBs) in portable electronics. However, most previously proposed preparation strategies are labor-intensive, intricate, and not appropriate for large-scale manufacturing. Herein, a multifunctional flexible silicon/carbon nanotube/reduced graphene oxide (Si/CNT/rGO) film was fabricated by one-step coating method based on the lyotropic nematic liquid crystals of graphene oxide (GO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!