The compound {[Ni(tren)]2[Sn2S6]}n (1) (tren = tris(2-aminoethyl)amine, C6H18N4) was successfully applied as source for the room-temperature synthesis of the new thiostannates [Ni(tren)(ma)(H2O)]2[Sn2S6]·4H2O (2) (ma = methylamine, CH5N) and [Ni(tren)(1,2-dap)]2[Sn2S6]·2H2O (3) (1,2-dap = 1,2-diaminopropane, C3H10N2). The Ni-S bonds in the Ni2S2N8 bioctahedron in the structure of 1 are analyzed with density functional theory calculations demonstrating significantly differing Ni-S bond strengths. Because of this asymmetry they are easily broken in the presence of an excess of ma or 1,2-dap immediately followed by Ni-N bond formation to N donor atoms of the amine ligands thus generating [Ni(tren)(amine)](2+) complexes. The chemical reactions are fast, and compounds 2 and 3 are formed within 1 h. The synthesis concept presented here opens hitherto unknown possibilities for preparation of new thiostannates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.6b00625 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
Sulfur dioxide (SO), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
Label-free surface-enhanced Raman spectroscopy (SERS) combined with machine learning (ML) techniques presents a promising approach for rapid pathogen identification. Previous studies have demonstrated that purine degradation metabolites are the primary contributors to SERS spectra; however, generating these distinguishable spectra typically requires a long incubation time (>10 h) at room temperature. Moreover, the lack of attention to spectral variations between strains of the same bacterial species has limited the generalizability of ML models in real-world applications.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, 81746-73441, Iran.
Biodiesel presents a sustainable alternative to fossil fuels, yet traditional homogeneous catalysts like sodium and potassium hydroxide face challenges with separation and reuse. Calcium oxide (CaO) is an effective heterogeneous catalyst for biodiesel production, but its chemical instability under reaction conditions restricts its long-term performance. This study introduces MOF-mediated synthesis (MOFMS) of heterogeneous catalysts, specifically CaO@ZnO and ZnO@CaO nanocomposites, from inexpensive and non-toxic metal salts and linkers in water.
View Article and Find Full Text PDFLife Metab
February 2025
Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China.
Graphical Abstract Lipoprotein lipase (LPL) mediates peripheral tissue triglyceride (TG) uptake. Hepatic ANGPTL3 (A3) and ANGPTL8 (A8) form a complex and inhibit LPL activity in the white adipose tissue (WAT) via systematic circulation. ANGPTL4 (A4) is expressed in WAT and inhibits LPL activity locally.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
Tender ginger is often used a fresh vegetable but hard to storage due to the delicate skin, high moisture content and prone to spoilage. In order to develop suitable preservation technology for tender ginger, the effects of vacuum packaging combined with different preservation temperatures (20-25 °C room temperature, 4 °C and 10 °C) on tender ginger shelf life were investigated. The results indicated that vacuum packaging combined with 4 °C (VP4) preservation could easily cause cold damage and postharvest physiological fluctuations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!