The advancement of trapping and detection of nano-objects at very low laser powers in the near-infra-red region (NIR) is crucial for many applications. Singular visible-light nano-optics based on abrupt phase changes have recently demonstrated a significant improvement in molecule detection. Here, we propose and demonstrate tunable plasmonic nanodevices, which can improve both the trapping field enhancement and detection of nano-objects using singular phase drops in the NIR range. The plasmonic nanostructures, which consist of gaps with dimensions 50 nm × 50 nm connecting nanorings in arrays is discussed. These gaps act as individual detection and trapping sites. The tunability of the system is evident from extinction and reflection spectra while increasing the aperture size in the arrays. Additionally, in the region where the plasmonic nano-array exhibits topologically-protected, near-zero reflection behaviour, the phase displays a rapid change. Our experimental data predict that, using this abrupt phase changes, one can improve the detection sensitivity by 10 times compared to the extinction spectra method. We finally report experimental evidence of 100 nm polystyrene beads trapping using low incident power on these devices. The overall design demonstrates strong capability as an optical, label-free, non-destructive tool for single molecule manipulation where low trapping intensity, minimal photo bleaching and high sensitivity is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/36/365301 | DOI Listing |
Light Sci Appl
January 2025
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.
Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.
View Article and Find Full Text PDFACS Nano
January 2025
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China.
Chiral plasmonic nanomaterials with fascinating physical and chemical properties show emerging chirality-dependent applications in photonics, catalysis, and sensing. The capability to precisely manipulate the plasmonic chirality in a broad spectral range plays a crucial role in enabling the applications of chiral nanomaterials in diverse and complex scenarios; however, it remains a challenge yet to be addressed. Here we demonstrate a strategy to significantly enhance the tunability of circular dichroism (CD) spectra of chiral nanomaterials by constructing core-shell hybrid metal-semiconductor structures with tailored shells.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Sichuan University, 610207, Chengdu, China.
In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.
View Article and Find Full Text PDFNano Lett
January 2025
Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.
View Article and Find Full Text PDFNano Lett
January 2025
University of Science & Technology of China, Hefei, Anhui 230026, China.
Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled CuO-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!