Label-free thioflavin T/G-quadruplex-based real-time strand displacement amplification for biosensing applications.

Biosens Bioelectron

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, PR China.

Published: December 2016

To promote application of strand-displacement amplification (SDA) techniques in biosensing, a label-free, real-time monitoring strategy for isothermal nucleic acid amplification reactions was designed. G-quadruplex structures were introduced into SDA products using specific recognition of G-quadruplexes by the fluorogenic dye thioflavin T. Performance was good for real-time monitoring of traditional SDA by a linear-amplification mechanism and for exponential cross-triggered SDA amplification. The strategy worked on a commercial real-time PCR instrument, making it suitable for biosensing platforms. As examples, two highly sensitive and specific biosensors were designed for analysis of the activity of uracil-DNA glycosylase (UDG) and the restriction endonuclease EcoRI. Detection limits were 6×10(-5)U/mL for UDG and 0.016U/mL for EcoRI. Detection of corresponding targets in complex matrices such as cell lysates or human serum was also demonstrated. Compared to traditional end-point detection methods, real-time SDA-based approaches have the advantages of simple, fast operation; high sensitivity; low risk of carryover contamination; and very high throughput. The introduction of real-time monitoring strategies may promote application of SDA reactions in biosensor design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.07.083DOI Listing

Publication Analysis

Top Keywords

real-time monitoring
12
promote application
8
ecori detection
8
real-time
6
sda
5
label-free thioflavin
4
thioflavin t/g-quadruplex-based
4
t/g-quadruplex-based real-time
4
real-time strand
4
strand displacement
4

Similar Publications

The advancements in cardiovascular imaging over the past two decades have been significant. The miniaturization of ultrasound devices has greatly contributed to their widespread adoption in operating rooms and intensive care units. The integration of AI-enabled tools has further transformed the field by simplifying echocardiographic evaluations and enhancing the reproducibility of hemodynamic measurements, even for less experienced operators.

View Article and Find Full Text PDF

Molecular Imaging of Cancer Stem Cells and Their Role in Therapy Resistance.

J Nucl Med

January 2025

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom

Despite recent therapeutic breakthroughs, cancer patients continue to face high recurrence and mortality rates due to treatment resistance. Cancer stem cells (CSCs), a subpopulation with self-renewal capabilities, are key drivers of refractive disease. This review explores the application of molecular imaging techniques, such as PET and SPECT, for the noninvasive detection of CSCs.

View Article and Find Full Text PDF

Cleft lip and palate (CLP) significantly impact speech and language development in children. In remote areas, access to specialised services is often limited, necessitating innovative approaches for effective service delivery. This case report explores the potential of tele-supervised intervention provided by community-based rehabilitation workers (CBRWs) to enhance communication outcomes for children with CLP.

View Article and Find Full Text PDF

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Zero-Crosstalk Tumor-Targeting Ratiometric Near-Infrared γ-Glutamyltranspeptidase Probe for Fluorescent-Guided Surgical Resection of Orthotopic Hepatic Tumor.

Anal Chem

January 2025

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.

The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!