In vivo electron paramagnetic resonance (EPR) imaging and spectroscopy are non-invasive technologies used to specifically detect and quantify paramagnetic species. However, the relative instability of spin probes such as triarylmethyl radicals limits their application to conduct oxygen quantification and mapping. In this study we encapsulated tetrathiatriarylmethyl radical (TAM; known as "Finland" probe) in Pluronic F-127 hydrogel (PF-127) in order to limit its degradation and evaluate its in vitro and in vivo EPR properties as a function of oxygen. Our results show that the EPR signal of encapsulated TAM in PF-127 hydrogel is similar to the one in solution. Although it is less sensitive to oxygen, it is suitable for oximetry. We also demonstrated that the incorporation of TAM in PF-127 hydrogel leads to an improved in vivo EPR stability of the radical under anesthesia. This new formulation enables high quality EPR imaging and oximetry and paves the way for the application of TAM radical-based probes in various biomedical fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2016.07.009 | DOI Listing |
AAPS J
January 2025
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Protein aggregates and particles in biopharmaceuticals can induce adverse immune responses in patients. Thus, suppression of the formation of protein aggregates and particles is important for the successful development of therapeutic proteins. Mechanical stresses, including agitation, are widely recognized as stress factors that generate protein aggregates and particles.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
Mitochondrial transplantation (MTx) offers a promising therapeutic approach to mitigate mitochondrial dysfunction in conditions such as ischemia-reperfusion (IR) injury. The quality and viability of donor mitochondria are critical to MTx success, necessitating the optimization of isolation protocols. This study aimed to assess a rapid mitochondrial isolation method, examine the relationship between mitochondrial size and membrane potential, and evaluate the potential benefits of Poloxamer 188 (P-188) in improving mitochondrial quality during the isolation process.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:
The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 51006 China. Electronic address:
Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil.
: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!