In this work, we propose a straightforward method to enhance the catalytic activity of AB dehydrogenation by using non-noble-metal nanoparticle supported on chromium-based metal-organic framework (MIL-101). It was demonstrated to be effective for hydrogen generation from ammonia borane under assistance of visible light irradiation as a noble-metal-free catalyst. The catalytic activity of metal nanoparticles supported on MIL-101 under visible light irradiation is remarkably higher than that without light irradiation. The TOFs of Cu/MIL-101, Co/MIL-101, and Ni/MIL-101 are 1693, 1571, and 3238 h(-1), respectively. The enhanced activity of catalysts can be primarily attributed to the cooperative promoting effects from both non-noble-metal nanoparticles and photoactive metal-organic framework in activating the ammonia borane molecule and strong ability in the photocatalytic production of hydroxyl radicals, superoxide anions, and electron-rich non-noble-metal nanoparticle. This work sheds light on the exploration of active non-noble metals supported on photoactive porous materials for achieving high catalytic activity of various redox reactions under visible light irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b04169DOI Listing

Publication Analysis

Top Keywords

light irradiation
20
visible light
16
non-noble-metal nanoparticle
12
metal-organic framework
12
ammonia borane
12
catalytic activity
12
nanoparticle supported
8
light
6
irradiation
5
non-noble-metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!