The mirid bug Apolygus lucorum (Meyer-Dür), a polyphagous pest, is dependent on olfactory cues to locate various host plant species and mates. In this study, we traced the projection pathway of the antennal sensory neurons and visualized their projection patterns in the central nervous system of A. lucorum through confocal microscopy and digital reconstructions. We also examined the glomerular organization of the primary olfactory center of the brain, the antennal lobe, and created a three-dimensional model of the glomeruli. We found that the axons of the sensory neurons project into the brain via the ipsilateral antennal nerve, and descend further into the gnathal ganglion, prothoracic ganglion, mesothoracic ganglion, and metathoracic ganglion, and reach as far as to the abdominal ganglion. Such a projection pattern indicates that antennal sensory neurons of A. lucorum may be potentially directly connected to motor neurons. The antennal lobe, however, is the major target area of antennal sensory neurons. The antennal lobe is composed of a large number of glomeruli, i.e. 70-80 glomeruli in one AL of A. lucorum. The results of this study which provide information about the basic anatomical arrangement of the brain olfactory center of A. lucorum, are important for further investigations of chemosensory encoding mechanisms of the mirid bug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968828 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160161 | PLOS |
Neural Regen Res
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
After spinal cord injury, impairment of the sensorimotor circuit can lead to dysfunction in the motor, sensory, proprioceptive, and autonomic nervous systems. Functional recovery is often hindered by constraints on the timing of interventions, combined with the limitations of current methods. To address these challenges, various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.
We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.
View Article and Find Full Text PDFScience
January 2025
Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA.
Itch is a dominant symptom in dermatitis, and scratching promotes cutaneous inflammation, thereby worsening disease. However, the mechanisms through which scratching exacerbates inflammation and whether scratching provides benefit to the host are largely unknown. We found that scratching was required for skin inflammation in mouse models dependent on FcεRI-mediated mast cell activation.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Biology, University of Fribourg, Fribourg, Switzerland.
Elife
January 2025
Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States.
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!