The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-and-white movies provide compelling representations of real world scenes. Also, the contrast sensitivity of color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. We conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968813 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159898 | PLOS |
PLoS Comput Biol
January 2025
Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli.
View Article and Find Full Text PDFCurr Res Neurobiol
June 2025
Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, United Kingdom.
Identifying the objects embedded in natural scenes relies on recurrent processing between lower and higher visual areas. How is cortical feedback information related to objects and scenes organised in lower visual areas? The spatial organisation of cortical feedback converging in early visual cortex during object and scene processing could be retinotopically specific as it is coded in V1, or object centred as coded in higher areas, or both. Here, we characterise object and scene-related feedback information to V1.
View Article and Find Full Text PDFBehav Res Methods
January 2025
Department of Psychology, Columbia University, New York, NY, USA.
While viewing a visual stimulus, we often cannot tell whether it is inherently memorable or forgettable. However, the memorability of a stimulus can be quantified and partially predicted by a collection of conceptual and perceptual factors. Higher-level properties that represent the "meaningfulness" of a visual stimulus to viewers best predict whether it will be remembered or forgotten across a population.
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
We examined the intricate mechanisms underlying visual processing of complex motion stimuli by measuring the detection sensitivity to contraction and expansion patterns and the discrimination sensitivity to the location of the center of motion (CoM) in various real and unreal optic flow stimuli. We conducted two experiments (N = 20 each) and compared responses to both "real" optic flow stimuli containing information about self-movement in a three-dimensional scene and "unreal" optic flow stimuli lacking such information. We found that detection sensitivity to contraction surpassed that to expansion patterns for unreal optic flow stimuli, whereas this trend was reversed for real optic flow stimuli.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Zoology, Faculty of Science, Charles University, Prague 128 43, Czech Republic.
African mole-rats (Bathyergidae, Rodentia) are subterranean rodents that live in extensive dark underground tunnel systems and rarely emerge aboveground. They can discriminate between light and dark but show no overt visually driven behaviours except for light-avoidance responses. Their eyes and central visual system are strongly reduced but not degenerated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!